Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7276-7282, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38465973

RESUMO

Glucagon-like peptide receptor (GLP-1R) agonists (e.g., semaglutide, liraglutide, etc.) are efficient treatment options for people with type 2 diabetes and obesity. The manufacturing method to produce semaglutide, a blockbuster GLP-1 drug on the market, involves multistep synthesis. The large peptide has a hydrophobic fatty acid side chain that makes it sparingly soluble, and its handling, purification, and large-scale production difficult. The growing demand for semaglutide that the manufacturer is not capable of addressing immediately triggered a worldwide shortage. Thus, we have developed a potential alternative analogue to semaglutide by replacing the hydrophobic fatty acid with a hydrophilic human complex-type biantennary oligosaccharide. Our novel glycoGLP-1 analogue was isolated in an ∼10-fold higher yield compared with semaglutide. Importantly, our glycoGLP-1 analogue possessed a similar GLP-1R activation potency to semaglutide and was biologically active in vivo in reducing glucose levels to a similar degree as semaglutide.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glicosilação , Humanos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/química , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Masculino , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Engenharia de Proteínas , Camundongos
2.
Nat Commun ; 13(1): 7013, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385145

RESUMO

The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Peptídeo Intestinal Vasoativo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular
3.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897648

RESUMO

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Peptídeo Intestinal Vasoativo , Sequência de Aminoácidos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/metabolismo
4.
PLoS One ; 17(7): e0270584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881628

RESUMO

Granzyme K (GzmK) is a tryptic member of the granzyme family of chymotrypsin-like serine proteases produced by cells of the immune system. Previous studies have indicated that GzmK activates protease-activated receptor 1 (PAR1) enhancing activation of monocytes and wound healing in endothelial cells. Here, we show using peptides and full length proteins that GzmK and, to a lesser extent the related protease GzmA, are capable of activating PAR1 and PAR2. These cleavage events occur at the canonical arginine P1 residue and involve exosite interactions between protease and receptor. Despite cleaving PAR2 at the same point as trypsin, GzmK does not induce a classical Ca2+ flux but instead activates a distinct signalling cascade, involving recruitment of ß-arrestin and phosphorylation of ERK. In epithelial A549 cells, PAR2 activation by GzmK results in the release of inflammatory cytokines IL-6 and IL-8. These data suggest that during an immune response GzmK acts as a pro-inflammatory regulator, rather than as a cytotoxin.


Assuntos
Receptor PAR-1 , Receptor PAR-2 , Endopeptidases/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Granzimas/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo
5.
Biochem Pharmacol ; 199: 114985, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35300966

RESUMO

G protein-coupled receptors (GPCRs) are the largest class of membrane proteins and in recent years there has been a growing appreciation of the importance in understanding temporal aspects of GPCR behaviour, including the kinetics of ligand binding and downstream receptor mediated signalling. Class B1 GPCRs are activated by peptide agonists and are validated therapeutic targets for numerous diseases. However, the kinetics of ligand binding and how this is linked to downstream activation of signalling cascades is not routinely assessed in development of peptide agonists for this receptor class. The glucagon-like peptide-1 receptor (GLP-1R) is a prototypical class B1 GPCR and a validated target for treatment of global health burdens, including type 2 diabetes and obesity. In this study we examined the kinetics of different steps in GLP-1R activation and subsequent cAMP production mediated by a series of GLP-1R peptide agonists, including the ligand-receptor interaction, ligand-receptor-mediated G protein engagement and conformational change and cAMP production. Our results revealed GLP-1R peptide agonist dissociation kinetics (Koff), but not association kinetics (Kon), were positively correlated with the onset of receptor-G protein coupling/conformational change, onset of cAMP production and duration of cAMP signalling. Thus, this study advances the understanding of molecular events that couple GLP-1R ligand binding to intracellular signaling, with the findings likely to have implications for mechanistic understanding of agonist action at other related class B1 GPCRs.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Cinética , Ligantes , Peptídeos/química , Receptores Acoplados a Proteínas G/metabolismo
6.
Nat Chem Biol ; 18(3): 256-263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34937906

RESUMO

Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Exenatida , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Peptídeos/química , Domínios Proteicos
7.
Bioconjug Chem ; 32(10): 2148-2153, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34494823

RESUMO

The current commercially available glucagon formulations for the treatment of severe hypoglycemia must be reconstituted immediately prior to use, owing to the susceptibility of glucagon to fibrillation and aggregation in an aqueous solution. This results in the inconvenience of handling, misuse, and wastage of this drug. To address these issues, we synthesized a glycosylated glucagon analogue in which the 25th residue (Trp) was replaced with a cysteine (Cys) and a Br-disialyloligosaccharide was conjugated at the Cys thiol moiety. The resulting analogue, glycoglucagon, is a highly potent full agonist at the glucagon receptor. Importantly, glycoglucagon exhibits markedly reduced propensity for fibrillation and enhanced thermal and metabolic stability. This novel analogue is thus a valuable lead for producing stable liquid glucagon formulations that will improve patient compliance and minimize wastage.


Assuntos
Glucagon , Hipoglicemia , Cisteína , Humanos
8.
Mol Cell ; 80(3): 485-500.e7, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027691

RESUMO

Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes. High-resolution cryoelectron microscopy (cryo-EM) structures reveal that the binding sites for PF 06882961 and GLP-1 substantially overlap, whereas CHU-128 adopts a unique binding mode with a more open receptor conformation at the extracellular face. Structural differences involving extensive water-mediated hydrogen bond networks could be correlated to functional data to understand how PF 06882961, but not CHU-128, can closely mimic the pharmacological properties of GLP-1. These findings will facilitate rational structure-based discovery of non-peptide agonists targeting class B GPCRs.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica/métodos , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Humanos , Peptídeos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
9.
Biochem Pharmacol ; 180: 114150, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682761

RESUMO

Metabolic diseases such as obesity, diabetes, and their comorbidities have converged as one of the most serious health concerns on a global scale. Selective glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists are one of the major therapeutics for type 2 diabetes and obesity. Polypharmacological approaches that enable modulation of multiple metabolic targets in a single drug have emerged as a potential avenue to improve therapeutic outcomes. Among numerous peptides under development are those targeting the GLP-1R and either the glucagon receptor (GCGR), glucose-dependent insulinotropic peptide receptor (GIPR) or all 3 receptors, as dual- or tri- peptide agonists. Despite many of them entering into clinical trials, current development has been based on only a limited understanding of the spectrum of potential pharmacological properties of these ligands beyond binding selectivity. In the present study, we examined the potential for agonists that target both GLP-1R and GCGR to exhibit biased agonism, comparing activity across proximal activation of Gs protein, cAMP accumulation, pERK1/2 and ß-arrestin recruitment. Three distinct dual agonists that have different relative cAMP production potency for GLP-1R versus GCGR, "peptide 15", MEDI0382 and SAR425899, and one triagonist of the GLP-1R, GCGR and GIPR were examined. We demonstrated that all novel peptides have distinct biased agonism profiles relative to either of the cognate agonists of the receptors, and to each other. This is an important feature of the pharmacology of this drug class that needs to be considered alongside selectivity, bioavailability and pharmacokinetics for rational optimization of new therapeutics.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Oxintomodulina/farmacologia , Peptídeos/farmacologia , Receptores de Glucagon/agonistas , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Agonismo de Drogas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células HEK293 , Humanos , Oxintomodulina/genética , Oxintomodulina/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Receptores de Glucagon/metabolismo
10.
Biochem Pharmacol ; 177: 114001, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360365

RESUMO

Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone with physiological roles in adipose tissue, the central nervous system and bone metabolism. While selective ligands for GIP receptor (GIPR) have not been advanced for disease treatment, dual and triple agonists of GIPR, in conjunction with that of glucagon-like peptide-1 (GLP-1) and glucagon receptors, are currently in clinical trials, with an expectation of enhanced efficacy beyond that of GLP-1 receptor (GLP-1R) agonist monotherapy for diabetic patients. Consequently, it is important to understand the pharmacological behavior of such drugs. In this study, we have explored signaling pathway specificity and the potential for biased agonism of mono-, dual- and tri-agonists of GIPR using human embryonic kidney 293 (HEK293) cells recombinantly expressing human GIPR or GLP-1R. Compared to GIP(1-42), the GIPR mono-agonists Pro3GIP and Lys3GIP are biased towards ERK1/2 phosphorylation (pERK1/2) relative to cAMP accumulation at GIPR, whereas the triple agonist at GLP-1R/GCGR/GIPR is biased towards pERK1/2 relative to ß-arrestin2 recruitment. Moreover, the dual GIPR/GLP-1R agonist, LY3298176, is biased towards pERK1/2 relative to cAMP accumulation at both GIPR and GLP-1R compared to their respective endogenous ligands. These data reveal novel pharmacological properties of potential therapeutic agents that may impact on diversity in clinical responses.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos/química , Peptídeos/farmacologia , Receptores dos Hormônios Gastrointestinais/agonistas , Cromograninas/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Humanos , Radioisótopos do Iodo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , beta-Arrestinas/metabolismo
11.
Mol Cell ; 77(3): 656-668.e5, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004469

RESUMO

Class B G protein-coupled receptors (GPCRs) are important therapeutic targets for major diseases. Here, we present structures of peptide and Gs-bound pituitary adenylate cyclase-activating peptide, PAC1 receptor, and corticotropin-releasing factor (CRF), (CRF1) receptor. Together with recently solved structures, these provide coverage of the major class B GPCR subfamilies. Diverse orientations of the extracellular domain to the receptor core in different receptors are at least partially dependent on evolutionary conservation in the structure and nature of peptide interactions. Differences in peptide interactions to the receptor core also influence the interlinked TM2-TM1-TM6/ECL3/TM7 domain, and this is likely important in their diverse signaling. However, common conformational reorganization of ECL2, linked to reorganization of ICL2, modulates G protein contacts. Comparison between receptors reveals ICL2 as a key domain forming dynamic G protein interactions in a receptor- and ligand-specific manner. This work advances our understanding of class B GPCR activation and Gs coupling.


Assuntos
Receptores de Hormônio Liberador da Corticotropina/ultraestrutura , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/ultraestrutura , Sequência de Aminoácidos , Microscopia Crioeletrônica/métodos , Encefalinas , Humanos , Ligantes , Modelos Moleculares , Peptídeos , Precursores de Proteínas , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 293(24): 9370-9387, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29717000

RESUMO

G protein-coupled receptors (GPCRs) can be differentially activated by ligands to generate multiple and distinct downstream signaling profiles, a phenomenon termed biased agonism. The glucagon-like peptide-1 receptor (GLP-1R) is a class B GPCR and a key drug target for managing metabolic disorders; however, its peptide agonists display biased signaling that affects their relative efficacies. In this study, we combined mutagenesis experiments and mapping of surface mutations onto recently described GLP-1R structures, which revealed two major domains in the GLP-1/GLP-1R/Gs protein active structure that are differentially important for both receptor quiescence and ligand-specific initiation and propagation of biased agonism. Changes to the conformation of transmembrane helix (TM) 5 and TM 6 and reordering of extracellular loop 2 were essential for the propagation of signaling linked to cAMP formation and intracellular calcium mobilization, whereas ordering and packing of residues in TMs 1 and 7 were critical for extracellular signal-regulated kinase 1/2 (pERK) activity. On the basis of these findings, we propose a model of distinct peptide-receptor interactions that selectively control how these different signaling pathways are engaged. This work provides important structural insight into class B GPCR activation and biased agonism.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peptídeos/farmacologia , Animais , Células CHO , Cálcio/metabolismo , Cricetulus , Cristalografia por Raios X , AMP Cíclico/metabolismo , Descoberta de Drogas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Humanos , Ligantes , Modelos Moleculares , Mutagênese , Peptídeos/metabolismo , Fosforilação , Conformação Proteica , Domínios Proteicos
13.
ACS Pharmacol Transl Sci ; 1(1): 12-20, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32219201

RESUMO

Advances in structural biology have yielded exponential growth in G protein-coupled receptor (GPCR) structure solution. Nonetheless, the instability of fully active GPCR complexes with cognate heterotrimeric G proteins has made them elusive. Existing structures have been limited to nanobody-stabilized GPCR:Gs complexes. Here we present methods for enhanced GPCR:G protein complex stabilization via engineering G proteins with reduced nucleotide affinity, limiting Gα:Gßγ dissociation. We illustrate the application of dominant negative G proteins of Gαs and Gαi2 to the purification of stable complexes where this was not possible with wild-type G protein. Active state complexes of adenosine:A1 receptor:Gαi2ßγ and calcitonin gene-related peptide (CGRP):CLR:RAMP1:Gαsßγ:Nb35 were purified to homogeneity and were stable in negative stain electron microscopy. These were suitable for structure determination by cryo-electron microscopy at 3.6 and 3.3 Å resolution, respectively. The dominant negative Gα-proteins are thus high value tools for structure determination of agonist:GPCR:G protein complexes that are critical for informed translational drug discovery.

14.
J Biol Chem ; 290(22): 13875-87, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25878251

RESUMO

Proteases that cleave protease-activated receptor-2 (PAR(2)) at Arg(36)↓Ser(37) reveal a tethered ligand that binds to the cleaved receptor. PAR(2) activates transient receptor potential (TRP) channels of nociceptive neurons to induce neurogenic inflammation and pain. Although proteases that cleave PAR(2) at non-canonical sites can trigger distinct signaling cascades, the functional importance of the PAR(2)-biased agonism is uncertain. We investigated whether neutrophil elastase, a biased agonist of PAR(2), causes inflammation and pain by activating PAR2 and TRP vanilloid 4 (TRPV4). Elastase cleaved human PAR(2) at Ala(66)↓Ser(67) and Ser(67)↓Val(68). Elastase stimulated PAR(2)-dependent cAMP accumulation and ERK1/2 activation, but not Ca(2+) mobilization, in KNRK cells. Elastase induced PAR(2) coupling to Gαs but not Gαq in HEK293 cells. Although elastase did not promote recruitment of G protein-coupled receptor kinase-2 (GRK(2)) or ß-arrestin to PAR(2), consistent with its inability to promote receptor endocytosis, elastase did stimulate GRK6 recruitment. Elastase caused PAR(2)-dependent sensitization of TRPV4 currents in Xenopus laevis oocytes by adenylyl cyclase- and protein kinase A (PKA)-dependent mechanisms. Elastase stimulated PAR(2)-dependent cAMP formation and ERK1/2 phosphorylation, and a PAR(2)- and TRPV4-mediated influx of extracellular Ca(2+) in mouse nociceptors. Adenylyl cyclase and PKA-mediated elastase-induced activation of TRPV4 and hyperexcitability of nociceptors. Intraplantar injection of elastase to mice caused edema and mechanical hyperalgesia by PAR(2)- and TRPV4-mediated mechanisms. Thus, the elastase-biased agonism of PAR(2) causes Gαs-dependent activation of adenylyl cyclase and PKA, which activates TRPV4 and sensitizes nociceptors to cause inflammation and pain. Our results identify a novel mechanism of elastase-induced activation of TRPV4 and expand the role of PAR(2) as a mediator of protease-driven inflammation and pain.


Assuntos
Inflamação/metabolismo , Elastase de Leucócito/metabolismo , Dor/metabolismo , Receptor PAR-2/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Edema/metabolismo , Edema/patologia , Proteínas de Ligação ao GTP/metabolismo , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Nociceptividade , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Peptídeo Hidrolases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Xenopus laevis/metabolismo
15.
J Biol Chem ; 289(39): 27215-27234, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25118282

RESUMO

Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R(36)↓S(37) and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E(56)↓T(57), which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca(2+), activate ERK1/2, recruit ß-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain.


Assuntos
Catepsinas/metabolismo , Dor , Receptor PAR-2 , Canais de Cátion TRPV , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Catepsinas/genética , Células HEK293 , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , Dor/genética , Dor/metabolismo , Dor/patologia , Receptor PAR-2/agonistas , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Xenopus laevis
16.
J Biol Chem ; 288(36): 25689-25700, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23913690

RESUMO

Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with ß-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and ß-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/ß-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from ß-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained ß-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions.


Assuntos
Sistema Nervoso Entérico/metabolismo , Neurônios/metabolismo , Proteólise , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/metabolismo , Somatostatina-28/metabolismo , Somatostatina/metabolismo , Animais , Arrestinas/genética , Arrestinas/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Endossomos/genética , Endossomos/metabolismo , Enzimas Conversoras de Endotelina , Feminino , Fármacos Gastrointestinais/farmacologia , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Masculino , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Octreotida/farmacocinética , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de Somatostatina/genética , Somatostatina/genética , Somatostatina-28/genética , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA