Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144632

RESUMO

Inflammation underlies a variety of physiological and pathological processes and plays an essential role in shaping the ensuing adaptive immune responses and in the control of pathogens. However, its physiological functions are not completely clear. Using a LPS-treated RAW264.7 macrophage inflammation model, we found that the production of inflammatory cytokines in ISOC1-deficient cells was significantly higher than that in the control group. It was further proved that ISOC1 deficiency could activate AKT1, and the overactivation of AKT1 could reduce the stability of PEX11B through protein modification, thereby reducing the peroxisome biogenesis and thus affecting inflammation. In this study, we reported for the first time the role of ISOC1 in innate immunity and elucidated the mechanism by which ISOC1 regulates inflammation through AKT1/PEX11B/peroxisome. Our results defined a new role of ISOC1 in the regulatory mechanism underlying the LPS-induced inflammatory response.


Assuntos
Hidrolases/metabolismo , Lipopolissacarídeos , Peroxissomos , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Peroxissomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Food Chem Toxicol ; 168: 113321, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35931247

RESUMO

Vitamin C (VC), in regard to its effectiveness against tumors, has had a controversial history in cancer treatment. However, the anticancer mechanisms of VC are not fully understood. Here, we reported that VC exerted an anticancer effect on cancer cell and xenograft models via inhibiting HIF-1α-dependent cell proliferation and promoting p53-dependent cell apoptosis. To be specific, VC modulated the competitive binding of HIF-1α and p53 to their common E3 ubiquitin ligase CBL, thereby inhibiting tumorigenesis. Moreover, VC treatment activated SIRT1, resulting in p53 deacetylation and CBL-p53 complex dissociation, which in turn facilitated CBL recruitment of HIF-1α for ubiquitination in a proteasome-dependent manner. Altogether, our results provided a mechanistic rationale for exploring the therapeutic use of VC in cancer therapy.


Assuntos
Neoplasias da Mama , Ubiquitina-Proteína Ligases , Ácido Ascórbico/farmacologia , Ligação Competitiva , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Int Immunopharmacol ; 101(Pt A): 108178, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607226

RESUMO

Sepsis is an unusual systemic infection caused by bacteria, which is a life-threatening organ dysfunction. The innate immune system plays an important role in this process; however, the specific mechanisms remain unclear. Using the LPS + treated mouse model, we found that the survival rate of Tgm2-/- mice was lower than that of the control group, while the inflammation was much higher. We further showed that Tgm2 suppressed apoptosis by inhibiting the JNK/BCL-2 signaling pathway. More importantly, Tgm2 interacted with Aga and regulated mitochondria-mediated apoptosis induced by LPS. Our findings elucidated a protective mechanism of Tgm2 during LPS stimulation and may provide a new reference target for the development of novel anti-infective drugs from the perspective of host immunity.


Assuntos
Aspartilglucosilaminase/metabolismo , Macrófagos/patologia , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Sepse/imunologia , Animais , Apoptose/imunologia , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sepse/patologia
4.
mBio ; 11(3)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487755

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that poses threats to the public. M. tuberculosis survives in macrophages by escaping from immune surveillance and clearance, which exacerbates the bacterial proliferation. However, the molecular mechanisms of this immune escape have not yet been fully understood. Using multiple cell and mouse models, we found that microRNA-325-3p (miR-325-3p) is upregulated after M. tuberculosis infection and Mir325-deficient mice show resistance to M. tuberculosis We demonstrated that miR-325-3p directly targets LNX1, an E3 ubiquitin ligase of NEK6, and that this hampers the proteasomal degradation of NEK6 in macrophages. The abnormal accumulation of NEK6 leads to the activation of STAT3 signaling, thus inhibiting the process of apoptosis and promoting the intracellular survival of M. tuberculosis Our findings not only reveal a new immune escape pathway of M. tuberculosis but also may provide new insights into the development of therapeutic approaches for drug-resistant TB.IMPORTANCE Intracellular survival of Mycobacterium tuberculosis results in bacterial proliferation and the spread of infection in lungs, consequently deteriorating the conditions of tuberculosis (TB) patients. This research discovers a new immune escape pathway of M. tuberculosis by modulating host miR-325-3p expression, thus leading to the intracellular survival of M. tuberculosis These findings make a contribution to the understanding of the immune escape of M. tuberculosis, and they provide a theoretical basis for the development of therapeutic approaches for drug-resistant TB.


Assuntos
Evasão da Resposta Imune , MicroRNAs/genética , Quinases Relacionadas a NIMA/genética , Fator de Transcrição STAT3/metabolismo , Tuberculose/microbiologia , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose , Linhagem Celular , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Espaço Intracelular/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Quinases Relacionadas a NIMA/imunologia , Células RAW 264.7 , Fator de Transcrição STAT3/imunologia , Transdução de Sinais , Tuberculose/imunologia , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA