Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 12, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281968

RESUMO

A large amount of greenhouse gases, such as carbon dioxide and methane, are released during the production process of bioethanol and biogas. Converting CO2 into methane is a promising way of capturing CO2 and generating high-value gas. At present, CO2 methanation technology is still in the early stage. It requires high temperature (300-400 â„ƒ) and pressure (> 1 MPa), leading to high cost and energy consumption. In this study, a new catalyst, Ni-Fe/Al-Ti, was developed. Compared with the activity of the common Ni/Al2O3 catalyst, that of the new catalyst was increased by 1/3, and its activation temperature was reduced by 100℃. The selectivity of methane was increased to 99%. In the experiment using simulated fermentation gas, the catalyst showed good catalytic activity and durability at a low temperature and atmospheric pressure. Based on the characterization of catalysts and the study of reaction mechanisms, this article innovatively proposed a Ni-Fe/Al-Ti quaternary catalytic system. Catalytic process was realized through the synergism of Al-Ti composite support and Ni-Fe promotion. The oxygen vacancies on the surface of the composite carrier and the higher activity metals and alloys promoted by Fe accelerate the capture and reduction of CO2. Compared with the existing catalysts, the new Ni-Fe/Al-Ti catalyst can significantly improve the methanation efficiency and has great practical application potential.

2.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201930

RESUMO

A modified J-integral calculation method is adopted to fix the problem of the quantitative evaluation of the crack propagation of shot-peened structures. Considering the residual stress, residual strain, and residual strain energy, the effect of shot peening on the J-integral parameters of semi-elliptic surface crack fronts is quantitatively calculated and a method is provided for the performance evaluation of the shot peening layer. First, the shot peening process is simulated, then the fatigue crack is generated by changing the constraint condition and a far-field load is applied to calculate the J-integral parameters, crack propagation rate, and crack kinking angle. The effects of different crack depths and shot velocities on the fracture parameters are analyzed. The results show that the reduction in the J-integral value after shot peening decreases with the increase in the crack depth when the shot velocity is a certain value, which indicates that shot peening is more beneficial for suppressing the fatigue crack propagation. When the crack depth is greater than the depth of the compressive stress layer, shot peening accelerates the crack propagation. The reduction in the J-integral value decreases with the increase in shot velocity when the crack depth is a certain value; therefore, increasing shot velocity is more beneficial for retarding fatigue crack propagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA