Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Immunol ; 14: 1342429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250062

RESUMO

Sarcoidosis is a chronic granulomatous disorder characterized by unknown etiology, undetermined mechanisms, and non-specific therapies except TNF blockade. To improve our understanding of the pathogenicity and to predict the outcomes of the disease, the identification of new biomarkers and molecular endotypes is sorely needed. In this study, we systematically evaluate the biomarkers identified through Omics and non-Omics approaches in sarcoidosis. Most of the currently documented biomarkers for sarcoidosis are mainly identified through conventional "one-for-all" non-Omics targeted studies. Although the application of machine learning algorithms to identify biomarkers and endotypes from unbiased comprehensive Omics studies is still in its infancy, a series of biomarkers, overwhelmingly for diagnosis to differentiate sarcoidosis from healthy controls have been reported. In view of the fact that current biomarker profiles in sarcoidosis are scarce, fragmented and mostly not validated, there is an urgent need to identify novel sarcoidosis biomarkers and molecular endotypes using more advanced Omics approaches to facilitate disease diagnosis and prognosis, resolve disease heterogeneity, and facilitate personalized medicine.


Assuntos
Doença Granulomatosa Crônica , Sarcoidose , Humanos , Biomarcadores , Algoritmos , Aprendizado de Máquina , Sarcoidose/diagnóstico , Sarcoidose/genética
2.
World J Stem Cells ; 12(6): 471-480, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32742564

RESUMO

Respiratory diseases, including coronavirus disease 2019 and chronic obstructive pulmonary disease (COPD), are leading causes of global fatality. There are no effective and curative treatments, but supportive care only. Cell therapy is a promising therapeutic strategy for refractory and unmanageable pulmonary illnesses, as proved by accumulating preclinical studies. Stem cells consist of totipotent, pluripotent, multipotent, and unipotent cells with the potential to differentiate into cell types requested for repair. Mesenchymal stromal cells, endothelial progenitor cells, peripheral blood stem cells, and lung progenitor cells have been applied to clinical trials. To date, the safety and feasibility of stem cell and extracellular vesicles administration have been confirmed by numerous phase I/II trials in patients with COPD, acute respiratory distress syndrome, bronchial dysplasia, idiopathic pulmonary fibrosis, pulmonary artery hypertension, and silicosis. Five routes and a series of doses have been tested for tolerance and advantages of different regimes. In this review, we systematically summarize the global trends for the cell therapy of common airway and lung diseases registered for clinical trials. The future directions for both new clinical trials and preclinical studies are discussed.

3.
Cell Biol Toxicol ; 36(6): 571-589, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32588239

RESUMO

Smoke inhalation injury is the leading cause of death in firefighters and victims. Inhaled hot air and toxic smoke are the predominant hazards to the respiratory epithelium. We aimed to analyze the effects of thermal stress and smoke aldehyde on the permeability of the airway epithelial barrier. Transepithelial resistance (RTE) and short-circuit current (ISC) of mouse tracheal epithelial monolayers were digitized by an Ussing chamber setup. Zonula occludens-1 tight junctions were visualized under confocal microscopy. A cell viability test and fluorescein isothiocyanate-dextran assay were performed. Thermal stress (40 °C) decreased RTE in a two-phase manner. Meanwhile, thermal stress increased ISC followed by its decline. Na+ depletion, amiloride (an inhibitor for epithelial Na+ channels [ENaCs]), ouabain (a blocker for Na+/K+-ATPase), and CFTRinh-172 (a blocker of cystic fibrosis transmembrane regulator [CFTR]) altered the responses of RTE and ISC to thermal stress. Steady-state 40 °C increased activity of ENaCs, Na+/K+-ATPase, and CFTR. Acrolein, one of the main oxidative unsaturated aldehydes in fire smoke, eliminated RTE and ISC. Na+ depletion, amiloride, ouabain, and CFTRinh-172 suppressed acrolein-sensitive ISC, but showed activating effects on acrolein-sensitive RTE. Thermal stress or acrolein disrupted zonula occludens-1 tight junctions, increased fluorescein isothiocyanate-dextran permeability but did not cause cell death or detachment. The synergistic effects of thermal stress and acrolein exacerbated the damage to monolayers. In conclusion, the paracellular pathway mediated by the tight junctions and the transcellular pathway mediated by active and passive ion transport pathways contribute to impairment of the airway epithelial barrier caused by thermal stress and acrolein. Graphical abstract Thermal stress and acrolein are two essential determinants for smoke inhalation injury, impairing airway epithelial barrier. Transcellular ion transport pathways via the ENaC, CFTR, and Na/K-ATPase are interrupted by both thermal stress and acrolein, one of the most potent smoke toxins. Heat and acrolein damage the integrity of the airway epithelium through suppressing and relocating the tight junctions.


Assuntos
Acroleína/toxicidade , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Temperatura Alta/efeitos adversos , Proteínas de Membrana Transportadoras/metabolismo , Lesão por Inalação de Fumaça/etiologia , Fumaça/efeitos adversos , Traqueia/efeitos dos fármacos , Animais , Brônquios/metabolismo , Brônquios/patologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Impedância Elétrica , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Canais Epiteliais de Sódio/metabolismo , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Transporte de Íons , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade , Lesão por Inalação de Fumaça/metabolismo , Lesão por Inalação de Fumaça/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Traqueia/metabolismo , Traqueia/patologia , Proteína da Zônula de Oclusão-1/metabolismo
4.
Br J Pharmacol ; 177(13): 3091-3106, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133621

RESUMO

BACKGROUND AND PURPOSE: Lung oedema in association with suppressed fibrinolysis is a hallmark of lung injury. Here, we have tested whether plasmin cleaves epithelial sodium channels (ENaC) to resolve lung oedema fluid. EXPERIMENTAL APPROACH: Human lungs and airway acid-instilled mice were used for analysing fluid resolution. In silico prediction, mutagenesis, Xenopus oocytes, immunoblotting, voltage clamp, mass spectrometry, and protein docking were combined for identifying plasmin cleavage sites. KEY RESULTS: Plasmin improved lung fluid resolution in both human lungs ex vivo and injured mice. Plasmin activated αßγENaC channels in oocytes in a time-dependent manner. Deletion of four consensus proteolysis tracts (αΔ432-444, γΔ131-138, γΔ178-193, and γΔ410-422) eliminated plasmin-induced activation significantly. Further, immunoblotting assays identified 7 cleavage sites (K126, R135, K136, R153, K168, R178, K179) for plasmin to trim both furin-cleaved C-terminal fragments and full-length human γENaC proteins. In addition, 9 new sites (R122, R137, R138, K150, K170, R172, R180, K181, K189) in synthesized peptides were found to be cleaved by plasmin. These cleavage sites were located in the finger and the thumb, particularly the GRIP domain of human ENaC 3D model composed of two proteolytic centres for plasmin. Novel uncleaved sites beyond the GRIP domain in both α and γ subunits were identified to interrupt the plasmin cleavage-induced conformational change in ENaC channel complexes. Additionally, plasmin could regulate ENaC activity via the G protein signal. CONCLUSION AND IMPLICATIONS: Plasmin can cleave ENaC to improve blood-gas exchange by resolving oedema fluid and could be a potent therapy for oedematous lungs.


Assuntos
Canais Epiteliais de Sódio , Fibrinolisina , Animais , Canais Epiteliais de Sódio/metabolismo , Fibrinolisina/metabolismo , Furina/metabolismo , Pulmão/metabolismo , Camundongos , Oócitos/metabolismo , Proteólise , Xenopus laevis/metabolismo
5.
J Med Genet ; 55(3): 143-149, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301855

RESUMO

Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Pneumopatias/terapia , Humanos , Pneumopatias/genética , Mutação , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/uso terapêutico , Nucleases de Dedos de Zinco/uso terapêutico
6.
Oncotarget ; 8(48): 83509-83522, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137360

RESUMO

BACKGROUND: Crotonaldehyde is a highly noxious α,ß-unsaturated aldehyde in cigarette smoke that causes edematous acute lung injury. OBJECTIVE: To understand how crotonaldehyde impairs lung function, we examined its effects on human epithelial sodium channels (ENaC), which are major contributors to alveolar fluid clearance. METHODS: We studied alveolar fluid clearance in C57 mice and ENaC activity was examined in H441 cells. Expression of α- and γ-ENaC was measured at protein and mRNA levels by western blot and real-time PCR, respectively. Intracellular ROS levels were detected by the dichlorofluorescein assay. Heterologous αßγ-ENaC activity was observed in an oocyte model. RESULTS: Our results showed that crotonaldehyde reduced transalveolar fluid clearance in mice. Furthermore, ENaC activity in H441 cells was inhibited by crotonaldehyde dose-dependently. Expression of α- and γ-subunits of ENaC was decreased at the protein and mRNA level in H441 cells exposed to crotonaldehyde, which was probably mediated by the increase in phosphorylated extracellular signal-regulated protein kinases 1 and 2. ROS levels increased time-dependently in cells exposed to crotonaldehyde. Heterologous αßγ-ENaC activity was rapidly eliminated by crotonaldehyde. CONCLUSION: Our findings suggest that crotonaldehyde causes edematous acute lung injury by eliminating ENaC activity at least partly via facilitating the phosphorylation of extracellular signal-regulated protein kinases 1 and 2 signal molecules. Long-term exposure may decrease the expression of ENaC subunits and damage the cell membrane integrity, as well as increase the levels of cellular ROS products.

7.
Oncotarget ; 8(18): 30511-30523, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28430622

RESUMO

BACKGROUND: Cell therapy holds the most promising for acute and chronic deleterious respiratory diseases. However, the safety and tolerance for lung disorders are controversy. METHODS: We undertook a systematic review and meta-analyses of all 23 clinical studies of cell therapy. The outcomes were odds ratio (OR), risk difference (RD), Peto OR, relative risk, and mean difference of serious adverse events. RESULTS: 342 systemic infusions and 57 bronchial instillations (204 recipients) of cells were analyzed for acute respiratory distress syndrome (ARDS), bronchopulmonary dysplasia, pulmonary arterial hypertension, silicosis, sarcoidosis, extensively drug-resistant tuberculosis, chronic obstructive pulmonary diseases (COPD), and idiopathic pulmonary fibrosis. The frequency of death in adults from any causes was 71 and 177 per 1,000 for cell therapy and controls, respectively, with an OR of 0.31 (95% CI: 0.03, 3.76) and RD of -0.22 (95% CI: -0.53, 0.09). No significant difference was found for ARDS and COPD. The frequency of deaths and non-fatal serious adverse events of 17 open studies were similar to those of randomized controlled trials. Moreover, serious adverse events of allogenic cells were greater than autologous preparations, as shown by frequency, OR and RD. CONCLUSIONS: We conclude that either infusion or instillation of mesenchymal stem stromal or progenitor cells are well tolerated without serious adverse events causally related to cell treatment. Cell therapy has not been associated with significant changes in spirometry, immune function, cardiovascular activity, and the quality of life.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Doenças Respiratórias/complicações , Doenças Respiratórias/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Ensaios Clínicos como Assunto , Humanos , Células-Tronco Mesenquimais , Razão de Chances , Doenças Respiratórias/mortalidade , Resultado do Tratamento
8.
Sci Rep ; 6: 35857, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762337

RESUMO

Unsaturated oxidative formaldehyde is a noxious aldehyde in cigarette smoke that causes edematous acute lung injury. However, the mechanistic effects of formaldehyde on lung fluid transport are still poorly understood. We examined how formaldehyde regulates human epithelial sodium channels (ENaC) in H441 and expressed in Xenopus oocytes and exposed mice in vivo. Our results showed that formaldehyde reduced mouse transalveolar fluid clearance in vivo. Formaldehyde caused a dose-dependent inhibition of amiloride-sensitive short-circuit Na+ currents in H441 monolayers and of αßγ-ENaC channel activity in oocytes. α-ENaC protein was reduced, whereas phosphorylation of the extracellular regulated protein kinases 1 and 2 (ERK1/2) increased significantly post exposure. Moreover, both α- and γ-ENaC transcripts were down-regulated. Reactive oxygen species (ROS) was elevated significantly by formaldehyde in addition to markedly augmented membrane permeability of oocytes. These data suggest that formaldehyde contributes to edematous acute lung injury by reducing transalveolar Na+ transport, through decreased ENaC activity and enhanced membrane depolarization, and by elevating ROS production over long-term exposure.


Assuntos
Transporte Biológico/efeitos dos fármacos , Canais Epiteliais de Sódio/metabolismo , Formaldeído/toxicidade , Amilorida/farmacologia , Animais , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Flavonoides/farmacologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xenopus/crescimento & desenvolvimento
9.
Sci Rep ; 6: 30780, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488696

RESUMO

Nasal potential difference (NPD), a well-established in vivo clinical test for cystic fibrosis, reflects transepithelial cation and anion transport in the respiratory epithelium. To analyze whether NPD can be applied to diagnose hypoxic lung injury, we searched PubMed, EMBASE, Scopus, Web of Science, Ovid MEDLINE, and Google Scholar, and analyzed data retrieved from eleven unbiased studies for high altitude pulmonary edema (HAPE) and respiratory distress syndrome (RDS) using the software RevMan and R. There was a significant reduction in overall basal (WMD -5.27 mV, 95% CI: -6.03 to -4.52, P < 0.00001, I(2) = 42%), amiloride-sensitive (ENaC) (-2.87 mV, 95% CI: -4.02 to -1.72, P < 0.00001, I(2) = 51%), and -resistant fractions (-3.91 mV, 95% CI: -7.64 to -0.18, P = 0.04, I(2) = 95%) in lung injury patients. Further analysis of HAPE and RDS separately corroborated these observations. Moreover, SpO2 correlated with ENaC-associated NPD positively in patients only, but apparently related to CFTR-contributed NPD level inversely. These correlations were confirmed by the opposite associations between NPD values and altitude, which had a negative regression with SpO2 level. Basal NPD was significantly associated with amiloride-resistant but not ENaC fraction. Our analyses demonstrate that acute lung injury associated with systemic hypoxia is characterized by dysfunctional NPD.


Assuntos
Lesão Pulmonar Aguda/diagnóstico , Doença da Altitude/diagnóstico , Hipertensão Pulmonar/diagnóstico , Síndrome do Desconforto Respiratório/diagnóstico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Software
10.
Int J Biol Sci ; 12(9): 1150-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570489

RESUMO

Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na(+) channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Pulmão/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
11.
J Cancer ; 6(8): 694-700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26185530

RESUMO

Esophageal cancer is an aggressive disease featured by early lymphatic and hematogenous dissemination, and is the sixth leading cause of cancer-related deaths worldwide. The proper formation of apicobasal polarity is essential for normal epithelium physiology and tissue homeostasis, while loss of polarity is a hallmark of cancer development including esophageal oncogenesis. In this review, we summarized the stages of esophageal cancer development associated with the loss or deregulation of epithelial cell apicobasal polarity. Loss of epithelial apicobasal polarity exerts an indispensable role in the initiation of esophageal oncogenesis, tumor progression, and the advancement of tumors from benign to malignant. In particular, we reviewed the involvement of several critical genes, including Lkb1, claudin-4, claudin-7, Par3, Lgl1, E-cadherin, and the Scnn1 gene family. Understanding the role of apicobasal regulators may lead to new paradigms for treatment of esophageal tumors, including improvement of prognostication, early diagnosis, and individually tailored therapeutic interventions in esophageal oncology.

12.
PLoS One ; 9(10): e109725, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329998

RESUMO

Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD) are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 5 (AQP5) proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and ß ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI) and II (ATII)-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3) was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD.


Assuntos
Aquaporina 5/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Troca Gasosa Pulmonar , Idoso , Aquaporina 5/genética , Estudos de Casos e Controles , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
13.
Am J Physiol Lung Cell Mol Physiol ; 307(8): L609-17, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172911

RESUMO

Epithelial sodium channels (ENaC) govern transepithelial salt and fluid homeostasis. ENaC contributes to polarization, apoptosis, epithelial-mesenchymal transformation, etc. Fibrinolytic proteases play a crucial role in virtually all of these processes and are elaborated by the airway epithelium. We hypothesized that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells and tested that possibility in primary murine tracheal epithelial cells (MTE). Both basal and cAMP-activated Na(+) flow through ENaC were significantly reduced in monolayers of uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane-permeabilized cells. A decrease in the Na(+)-K(+)-ATPase activity in the basolateral membrane could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid reabsorption by MTEs. ERK1/2, but not Akt, phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice vs. those of wild-type controls. Expression of caspase 8, however, did not differ between wild-type and uPA(-/-) mice. In addition, uPA deficiency did not alter transepithelial resistance. Taken together, the mechanisms for the regulation of ENaC by uPA in MTEs include augmentation of Na(+)-K(+)-ATPase, proteolysis, and restriction of ERK1/2 phosphorylation. We demonstrate for the first time that ENaC may serve as a downstream signaling target by which uPA controls the biophysical profiles of airway fluid and epithelial function.


Assuntos
Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Traqueia/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Animais , Apoptose , Permeabilidade da Membrana Celular , Células Cultivadas , Células Epiteliais/citologia , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Immunoblotting , Transporte de Íons , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/citologia , Oócitos/metabolismo , Fosforilação , Proteólise , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , RNA Interferente Pequeno/genética , Traqueia/citologia , Xenopus laevis/metabolismo
14.
BMC Cancer ; 14: 544, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25069990

RESUMO

BACKGROUND: Ectopic TSH-secreting pituitary adenoma (TSH-oma) is a very unusual disorder. To date, there are only four cases reported. It is difficult to distinguish ectopic cases from both regular TSH-omas and resistance to thyroid hormone (RTH). CASE PRESENTATION: A newly identified case of ectopic TSH-oma arising from the nasal pharynx was described, and reports of four prior cases were reviewed. The patient was a 41-year-old male who developed what appeared to be typical hyperthyroidism and atrial fibrillation in 2009. Thyroid function tests showed elevated basal levels of free T3 (FT3, 24.08 pmol/L), free T4 (FT4, 75.73 pmol/L), and serum TSH (7.26 µIU/ml). Both TSH-oma and resistance to thyroid hormone syndrome were considered. TRH stimulating test was negative, whereas octreotide inhibition test showed a reduction in TSH by 30.8%. Furthermore, a large space-occupying lesion located at the nasopharynx was found by computed tomography and magnetic resonance imaging (MRI). A normal pituitary was visualized. Ectopic TSH-oma was preliminarily established. Using an endoscopic endonasal approach, the tumor was resected. Histological features and immunophenotypes were consistent with those of TSH-secreting tumor. The levels of both free thyroxine and TSH returned to normal ranges the day after surgery and remained within normal range for 48 months. CONCLUSIONS: Although exceedingly rare, ectopic TSH-oma should be considered for patients with inappropriate secretion of TSH with hyperthyroidism and pituitary tumor undetectable by computed tomography and MRI. To our knowledge, this is the first case followed up more than 4 years. The characteristics and successful interventions summarized in this report provide a guideline for clinicians.


Assuntos
Adenoma/patologia , Neoplasias Hipofisárias/patologia , Tireotropina/metabolismo , Adenoma/metabolismo , Adenoma/cirurgia , Adulto , Humanos , Hipertireoidismo/metabolismo , Hipertireoidismo/patologia , Masculino , Octreotida/farmacologia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/cirurgia , Doenças Raras/metabolismo , Doenças Raras/patologia
15.
Biochim Biophys Acta ; 1808(7): 1818-26, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21419751

RESUMO

External Na(+) self-inhibition is an intrinsic feature of epithelial sodium channels (ENaC). Cpt-cAMP regulates heterologous guinea pig but not rat αßγ ENaC in a ligand-gated manner. We hypothesized that cpt-cAMP may eliminate the self-inhibition of human ENaC thereby open channels. Regulation of self-inhibition by this compound in oocytes was analyzed using the two-electrode voltage clamp and Ussing chamber setups. External cpt-cAMP stimulated human but not rat and murine αßγ ENaC in a dose- and external Na(+) concentration-dependent fashion. Intriguingly, cpt-cAMP activated human δßγ more potently than αßγ channels, suggesting that structural diversity in ectoloop between human α, δ, and those ENaC of other species determines the stimulating effects of cpt-cAMP. Cpt-cAMP increased the ratio of stationary and maximal currents. Mutants having abolished self-inhibition (ß(ΔV348) and γ(H233R)) almost completely eliminated cpt-cAMP mediated activation of ENaC. On the other hand, mutants both enhancing self-inhibition and elevating cpt-cAMP sensitivity increased the stimulating effects of the compound. This compound, however, could not activate already fully opened channels, e.g., degenerin mutation (αß(S520C)γ) and the proteolytically cleaved ENaC by plasmin. Cpt-cAMP activated native ENaC to the same extent as that for heterologous ENaC in human lung epithelial cells. Our data demonstrate that cpt-cAMP, a broadly used PKA activator, stimulates human αßγ and δßγ ENaC channels by relieving self-inhibition.


Assuntos
AMP Cíclico/análogos & derivados , Agonistas do Canal de Sódio Epitelial , Tionucleotídeos/farmacologia , Animais , Células Cultivadas , AMP Cíclico/farmacologia , Eletroquímica , Bloqueadores do Canal de Sódio Epitelial , Canais Epiteliais de Sódio/genética , Feminino , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Ratos , Xenopus laevis
16.
Am J Physiol Renal Physiol ; 298(2): F323-34, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20007351

RESUMO

Epithelial sodium channels (ENaC) are regulated by protein kinase A, in addition to a broad spectrum of other protein kinases. It is not clear whether cGMP/PKG signaling might regulate ENaC activity. We examined the responses of alphabetagamma-ENaC channels expressed in Xenopus oocytes to 8-(4-chlorophenylthio)-cGMP (8-pCPT-cGMP), a cell-permeable cGMP analog. This compound stimulated human alphabetagamma-ENaC activity in a dose-dependent fashion, but cell-impermeable cGMP had no effect. Similar stimulatory effects of cGMP were observed in oocytes expressing either mouse or rat alphabetagamma-ENaC channels. The identical ion selectivity and amiloride sensitivity of the 8-pCPT-cGMP-activated currents to those of alphabetagamma-ENaC channels suggest that the cGMP-activated currents are associated with expressed ENaC. The PKGI activator Sp isomer of beta-phenyl-1,N(2)-etheno-8-bromo-cGMP did not elicit a rise in ENaC current and that the 8-pCPT-cGMP-induced activation of ENaC channels was blocked by incubating oocytes with a PKG inhibitor, but not with other cGMP-sensitive kinase inactivators for PKA, MEK, MAP, and PKC. Surprisingly, both site-directed mutation of putative consensus PKG phosphorylation sites and truncation of entire cytosolic NH(2)- and COOH-terminal tails did not alter the response to 8-pCPT-cGMP. The ENaC activity was activated to the same extent by 8-pCPT-cGMP in cells in which PKGII expression was knocked down using small interfering RNA. Analog to 8-CPT-cAMP, 8-pCPT-cGMP was capable of activating ENaC in the identical manner in cell-free outside-out patches. We conclude that the rapid upregulation of human alphabetagamma-ENaC activity in oocytes by external 8-pCPT-cGMP and 4-chlorothiolphenol-cAMP depends on the para-chlorophenylthiol and the hydroxy groups, and 8-pCPT-cGMP may serve as a novel ENaC ligand in addition to activating PKG signal.


Assuntos
GMP Cíclico/análogos & derivados , Canais Epiteliais de Sódio/metabolismo , Oócitos/metabolismo , Tionucleotídeos/administração & dosagem , Animais , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , GMP Cíclico/administração & dosagem , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citosol/metabolismo , Relação Dose-Resposta a Droga , Condutividade Elétrica , Ativadores de Enzimas/farmacologia , Feminino , Humanos , Isoenzimas/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Lítio/farmacologia , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Fosforilação , Potássio/farmacologia , Isoformas de Proteínas , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/farmacologia , Ratos , Tionucleotídeos/farmacologia , Regulação para Cima , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA