Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Med Imaging ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38258593

RESUMO

BACKGROUND: Patients with cancer can develop bone metastasis when a solid tumor invades the bone, which is the third most commonly affected site by metastatic cancer, after the lung and liver. The early detection of bone metastases is crucial for making appropriate treatment decisions and increasing survival rates. Deep learning, a mainstream branch of machine learning, has rapidly become an effective approach to analyzing medical images. OBJECTIVE: To automatically diagnose bone metastasis with bone scintigraphy, in this work, we proposed to cast the bone metastasis diagnosis problem into automated image classification by developing a deep learning-based automated classification model. METHODS: A self-defined convolutional neural network consisting of a feature extraction sub-network and feature classification sub-network was proposed to automatically detect lung cancer bone metastasis, with a feature extraction sub-network extracting hierarchal features from SPECT bone scintigrams and feature classification sub-network classifying high-level features into two categories (i.e., images with metastasis and without metastasis). RESULTS: Using clinical data of SPECT bone scintigrams, the proposed model was evaluated to examine its detection accuracy. The best performance was achieved if the two images (i.e., anterior and posterior scans) acquired from each patient were fused using pixel-wise addition operation on the bladder-excluded images, obtaining the best scores of 0.8038, 0.8051, 0.8039, 0.8039, 0.8036, and 0.8489 for accuracy, precision, recall, specificity, F-1 score, and AUC value, respectively. CONCLUSION: The proposed two-class classification network can predict whether an image contains lung cancer bone metastasis with the best performance as compared to existing classical deep learning models. The high accumulation of 99mTc MDP in the urinary bladder has a negative impact on automated diagnosis of bone metastasis. It is recommended to remove the urinary bladder before automated analysis.

2.
Insights Imaging ; 13(1): 24, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138479

RESUMO

BACKGROUND: Whole-body bone scan is the widely used tool for surveying bone metastases caused by various primary solid tumors including lung cancer. Scintigraphic images are characterized by low specificity, bringing a significant challenge to manual analysis of images by nuclear medicine physicians. Convolutional neural network can be used to develop automated classification of images by automatically extracting hierarchal features and classifying high-level features into classes. RESULTS: Using convolutional neural network, a multi-class classification model has been developed to detect skeletal metastasis caused by lung cancer using clinical whole-body scintigraphic images. The proposed method consisted of image aggregation, hierarchal feature extraction, and high-level feature classification. Experimental evaluations on a set of clinical scintigraphic images have shown that the proposed multi-class classification network is workable for automated detection of lung cancer-caused metastasis, with achieving average scores of 0.7782, 0.7799, 0.7823, 0.7764, and 0.8364 for accuracy, precision, recall, F-1 score, and AUC value, respectively. CONCLUSIONS: The proposed multi-class classification model can not only predict whether an image contains lung cancer-caused metastasis, but also differentiate between subclasses of lung cancer (i.e., adenocarcinoma and non-adenocarcinoma). On the context of two-class (i.e., the metastatic and non-metastatic) classification, the proposed model obtained a higher score of 0.8310 for accuracy metric.

3.
Phys Med Biol ; 67(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34933282

RESUMO

A bone scan is widely used for surveying bone metastases caused by various solid tumors. Scintigraphic images are characterized by inferior spatial resolution, bringing a significant challenge to manual analysis of images by nuclear medicine physicians. We present in this work a new framework for automatically classifying scintigraphic images collected from patients clinically diagnosed with lung cancer. The framework consists of data preparation and image classification. In the data preparation stage, data augmentation is used to enlarge the dataset, followed by image fusion and thoracic region extraction. In the image classification stage, we use a self-defined convolutional neural network consisting of feature extraction, feature aggregation, and feature classification sub-networks. The developed multi-class classification network can not only predict whether a bone scan image contains bone metastasis but also tell which subcategory of lung cancer that a bone metastasis metastasized from is present in the image. Experimental evaluations on a set of clinical bone scan images have shown that the proposed multi-class classification network is workable for automated classification of metastatic images, with achieving average scores of 0.7392, 0.7592, 0.7242, and 0.7292 for accuracy, precision, recall, and F-1 score, respectively.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Cintilografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA