Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 36(11): e22599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36250902

RESUMO

Emerging evidence suggest that C3aR plays important roles in homeostasis, host defense and disease. Although it is known that C3aR is protective in several models of acute bacterial infections, the role for C3aR in chronic infection is largely unknown. Here we show that C3aR is protective in experimental chronic pyelonephritis. Global C3aR deficient (C3ar-/- ) mice had higher renal bacterial load, more pronounced renal histological lesions, increased renal apoptotic cell accumulation, tissue inflammation and extracellular matrix deposition following renal infection with uropathogenic E. coli (UPEC) strain IH11128, compared to WT control mice. Myeloid C3aR deficient (Lyz2-C3ar-/- ) mice exhibited a similar disease phenotype to global C3ar-/- mice. Pharmacological treatment with a C3aR agonist reduced disease severity in experimental chronic pyelonephritis. Furthermore, macrophages of C3ar-/- mice exhibited impaired ability to phagocytose UPEC. Our data clearly demonstrate a protective role for C3aR against experimental chronic pyelonephritis, macrophage C3aR plays a major role in the protection, and C3aR is necessary for phagocytosis of UPEC by macrophages. Our observation that C3aR agonist curtailed the pathology suggests a therapeutic potential for activation of C3aR in chronic infection.


Assuntos
Infecções por Escherichia coli , Pielonefrite , Receptores de Complemento , Animais , Camundongos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Rim/microbiologia , Rim/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Pielonefrite/imunologia , Pielonefrite/microbiologia , Pielonefrite/patologia , Pielonefrite/prevenção & controle , Escherichia coli Uropatogênica/patogenicidade , Receptores de Complemento/agonistas , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Receptores de Complemento/imunologia , Matriz Extracelular/metabolismo
2.
Front Cell Infect Microbiol ; 12: 824505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433513

RESUMO

Our previous work using a murine model of pyelonephritis demonstrated that the C5a/C5aR1 axis plays a pathogenic role in acute kidney infection. In this study, we report that the C5a/C5aR1 axis also plays a pathogenic role in acute bladder infection. C5aR1-deficient mice had reduced bladder bacterial load and attenuated bladder tissue injury, which is associated with reduced expression of terminal α-mannosyl residues (Man) (a potential ligand for type 1 fimbriae of E. coli) at the luminal surface of the bladder epithelium and reduced early bacterial colonization of the bladder. In vitro, C5a stimulation enhanced mannose expression in and facilitated bacterial adhesion/colonization to human bladder epithelial cells. C5a stimulation also upregulated the activation of ERK1/2 and NF-κB signaling and gene expression of proinflammatory cytokines (i.e., Il6, Il1b, Cxcl1, Ccl2) in the epithelial cells, which could drive pro-inflammatory responses leading to tissue injury. Administration of the C5aR1 antagonist effectively reduced bladder bacterial load and tissue injury. Thus, our findings demonstrate a previously unknown pathogenic role for the C5a/C5aR1 axis in bladder infection and suggest that the C5a/C5aR1 axis-mediated upregulation of Man expression, enhancement of bacterial adhesion/colonization, and excessive inflammatory responses contribute to acute bladder infection. These findings improve our understanding of the pathogenesis of bladder infection with therapeutic implications for UTI.


Assuntos
Cistite , Pielonefrite , Escherichia coli Uropatogênica , Doença Aguda , Animais , Complemento C5a , Citocinas/metabolismo , Feminino , Humanos , Camundongos , Receptor da Anafilatoxina C5a/genética , Escherichia coli Uropatogênica/metabolismo
3.
J Ethnopharmacol ; 267: 113467, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058923

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal medicines (HMs) often exert integration effects, including synergistic, additive and antagonistic effects, in such ways that they act on multiple targets and multiple pathways on account of their multiple components. Turmeric, made from the rhizome of Curcuma longa L., is a well-known HM prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicines (TCMs). However, neither the multiple anticancer compounds of turmeric nor the integration effects of these components are fully known. AIM OF THE STUDY: This work aims to develop a systematic approach to reveal the integration effect mechanisms of multiple anticancer compounds in turmeric against prostate cancer PC3 cells. MATERIALS AND METHODS: Combination index and omics technologies were applied to profile the integration effect mechanisms of bioactive compounds in proportions naturally found in turmeric. PC3 cell line (a prostate cancer cell line) fishing and high resolution mass spectrometry were employed to screen and identify the anticancer compounds from turmeric. The combinations which contain different cell-bound compounds in natural proportions were prepared for further evaluation of anti-cancer activity by using cell viability assays, and assessment of cell apoptosis and cell cycle analysis. Combination index analysis was applied to study the integration effects of the anticancer compounds in their natural proportions. Finally, quantitative glycoproteomics/proteomics and Western blot were implemented to reveal the potential synergistic effect mechanisms of the anticancer compounds based on their natural proportions in turmeric. RESULTS: Three curcuminoids (curcumin, CUR; demethoxycurcumin, DMC; bisdemethoxycurcumin, BDMC) in turmeric were discovered and shown to possess significant synergistic anticancer activities. Combination index analysis revealed an additive effect of CUR combined with DMC or BDMC and a slight synergistic effect of DMC combined with BDMC in natural proportions in turmeric, while a combination of all three curcuminoids (CUR, DMC and BDMC) at a ratio of 1:1:1 yielded superior synergistic effects. Interestingly, the presence of BDMC and DMC are essential for synergistic effect. Glycoproteomics and proteomics demonstrated that different curcuminoids regulate various protein pathways, such as ribosome, glycolysis/gluconeogenesis, biosynthesis of amino acids, and combination of CUR + DMC + BDMC showed the most powerful effects on down-regulation of protein expression. CONCLUSIONS: Our analytical approach provides a systematic understanding of the holistic activity and integration effects of the anti-cancer compounds in turmeric and three curcuminoids of turmeric showed a synergistic effect on PC3 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcuma , Diarileptanoides/farmacologia , Glicômica , Glicoproteínas/metabolismo , Extratos Vegetais/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteômica , Antineoplásicos Fitogênicos/isolamento & purificação , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Curcuma/química , Diarileptanoides/isolamento & purificação , Sinergismo Farmacológico , Humanos , Masculino , Células PC-3 , Extratos Vegetais/isolamento & purificação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Mapas de Interação de Proteínas , Transdução de Sinais
4.
Arterioscler Thromb Vasc Biol ; 40(9): 2070-2083, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32762445

RESUMO

OBJECTIVE: Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar-/-/Apoe-/- mice were generated by cross-breeding of atherosclerosis-prone Apoe-/- mice and C3ar-/- mice. C3ar-/-/Apoe-/- mice and Apoe-/- mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b+ leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe-/- mice, C3ar-/-/Apoe-/- mice developed more severe atherosclerosis. In addition, C3ar-/-/Apoe-/- mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. CONCLUSIONS: Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis-mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Inflamação/prevenção & controle , Macrófagos Peritoneais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiotaxia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Fenótipo , Placa Aterosclerótica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Chin Herb Med ; 12(3): 297-302, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36119002

RESUMO

Objective: In the present study, Gentiana rigescens was screened for fungi communities to clarify their diversity and community assemblage in hosts. Meanwhile, the identification and activity assays of the strains were also conducted. Methods: By culture-dependent (endophytic fungi isolations from plant sections) and culture-independent (metagenomic library and cloning from plant sections) techniques, fungi communities were studied. The metagenomic library was generated using direct DNA isolation of whole plants, plant radixes, plant stems, plant leaves, plant flowers and soils around the plant. Meanwhile, endophytes were isolated from all parts of G. rigescens plants. After fermentation of the fungi isolations, all the isolates were evaluated for their cytotoxicity against four kinds of human cancer cell lines (HCT116, BEL7404, A549, MDA-MB-231). Results: Eventually, 200 strains were isolated and 103 strains were further identified through the internal transcribed spacer (ITS, ITS1 and ITS2 regions) sequence by using the universal primers ITS5 and ITS4. A total of 59,106 fungal sequences corresponding to 374 putative operational taxonomic units (OTU) were identified by 454 pyrosequencing. Through 454 pyrosequencing, the main fungal genera were Sebacina, Botrytis, Mycosphaerella, Boletus and Gibberella, and the major fungal genera which were directly isolated were Aspergillus, Fusarium, Penicillium and Alternaria. Activity assays showed strains 5-26 (Aspergillus sp.) and 6-2 (Fusarium avenaceum) had the outstanding cytotoxicity to all the tested cell lines with IC50 values <5 µg/mL. Conclusion: This study revealed the abundance of endogenetic fungal resources and a variety of genetic information in G. rigescens by high-throughput 454 sequencing technology and fungi isolation methods. Activity assays indicated that endophytes were a promising natural source of potential anticancer agents.

6.
Oncol Rep ; 32(6): 2777-88, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25335112

RESUMO

Breast cancer, the leading cause of cancer-related mortality worldwide in females, has high metastastic and recurrence rates. The aim of the present study was to evaluate the anti-metastatic and anticancer in situ effect of berberine hydrochloride (BER) in MDA-MB-231 cells. BER dose-dependently inhibited proliferation and the IL-8 secretion of MDA-MB-231 cells. Additional experiments revealed that the inactivation of PI3K, JAK2, NF-κB and AP-1 by BER contributed to the decreased IL-8 secretion. BER abrogated cell invasion induced by IL-8 accompanied with the downregulation of the gene expression of MMP-2, EGF, E-cadherin, bFGF and fibronectin. In addition, BER reduced cell motility but induced G2/M arrest and cell apoptosis in an IL-8­independent manner. BER modulated multiple signaling pathway molecules involved in the regulation of cell apoptosis, including activation of p38 MAPK and JNK and deactivation of JAK2, p85 PI3K, Akt and NF-κB. The enhanced cell apoptosis induced by BER was eliminated by inhibitors of p38 MAPK and JNK but was strengthened by activator of p38 MAPK. Thus, BER inhibited cell metastasis partly through the IL-8 mediated pathway while it induced G2/M arrest and promoted cell apoptosis through the IL-8 independent pathway. Apoptosis induced by BER was mediated by crosstalks of various pathways including activation of p38 MAPK and JNK pathways and inactivation of Jak2/PI3K/NF-κB/AP-1 pathways. The results suggested that BER may be an efficient and safe drug candidate for treating highly metastatic breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Berberina/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Interleucina-8/metabolismo , Recidiva Local de Neoplasia/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/genética , Sistema de Sinalização das MAP Quinases/genética , NF-kappa B/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
7.
Yao Xue Xue Bao ; 47(10): 1399-402, 2012 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-23289156

RESUMO

Estrogen participates in many life activities through combination with estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta) in the body. In order to establish an in vitro estrogen-like compound screening model, the coding region of human ERalpha and ERbeta was separately constructed into pET32-ERalpha and pET43-ERbeta prokaryotic expression vector and water-soluble recombinant ERalpha and ERbeta proteins were expressed in Escherichia coli strain BL21. Western blotting revealed that both recombinant proteins have estrogen receptor binding sites. The proteins were purified using S-Tag affinity Purification Kit and digested with enterokinase to get the ERalpha and ERbeta proteins. About 0.90 mg of ERalpha and 0.65 mg of ERbeta were obtained at the concentration of 0.181 and 0.131 mg x mL(-1), respectively.


Assuntos
Escherichia coli/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Sítios de Ligação , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Vetores Genéticos , Humanos , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Yao Xue Xue Bao ; 46(11): 1352-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22260028

RESUMO

Danshen (Salvia miltiorrhiza Bunge) hairy roots were obtained by infecting Danshen leaves with Agrobacterium rhizogenes 9402. Besides rosmarinic acid (RA) and salvianolic acid B (SAB), the hairy root could also produce salvianolic acid K (SAK), salvianolic acid L, ethyl salvianolic acid B (ESAB), methyl salvianolic acid B (MSAB), and a compound with a molecular weight of 538 (compound 538) identified by using LC-MS. Effects of methyl jasmonate (MeJA) and yeast elicitor (YE) on the accumulation of these compounds had been investigated. MeJA increased the accumulation of SAB, RA, SAK, and compound 538 from 4.21%, 2.48%, 0.29%, and 0.01% of dry weight to 7.11%, 3.38%, 0.68%, and 0.04%, respectively. YE stimulated the biosynthesis of RA from 2.83% to 5.71%, but depressed the synthesis of SAB, SAK and compound 538. It was indicated in all the results that these Danshen hairy roots could be used as alternative resources to produce salvianolic acids. Analysis of the content variation of these compounds after elicitation suggested that SAK and compound 538 might be the intermediates in the biosynthesis from RA to SAB in Danshen hairy roots.


Assuntos
Acetatos/farmacologia , Alcenos/análise , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Polifenóis/análise , Polifenóis/biossíntese , Salvia miltiorrhiza/química , Leveduras/química , Benzofuranos/análise , Cinamatos/análise , Depsídeos/análise , Fenilpropionatos/análise , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/química , Plantas Medicinais/química , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA