Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
ACS Appl Mater Interfaces ; 16(20): 25879-25891, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718301

RESUMO

Biological imaging-guided targeted tumor therapy has been a soughtafter goal in the field of cancer diagnosis and treatment. To this end, we proposed a strategy to modulate surface plasmon resonance and endow WO3-x nanoparticles (NPs) with enzyme-like catalytic properties by doping Fe2+ in the structure of the NPs. Doping of the Fe2+ introduced oxygen vacancies into the structure of the NPs, inducing a red shift of the maximum absorption wavelength into the near-infrared II (NIR-II) region and enhancing the photoacoustic (PA) and photothermal properties of the NPs for more effective imaging-guided cancer therapy. Under NIR-II laser irradiation, the Fe-WO3-x NPs produced very strong NIR-II PA and photothermal effects, which significantly enhanced the PA imaging and photothermal treatment effects. On the other hand, Fe2+ in Fe-WO3-x could undergo Fenton reactions with H2O2 in the tumor tissue to generate ·OH for chemodynamic therapy. In addition, Fe-WO3-x can also catalyze the above reactions to produce more reactive oxygen species (ROS) and induce the oxidation of NADH to interfere with intracellular adenosine triphosphate (ATP) synthesis, thereby further improving the efficiency of cancer therapy. Specific imaging of tumor tissue and targeted synergistic therapy was achieved after ligation of a MUC1 aptamer to the surface of the Fe-WO3-x NPs by the complexing of -COOH in MUC1 with tungsten ions on the surface of the NPs. These results demonstrated that Fe-WO3-x NPs could be a promising diagnosis and therapeutic agent for cancer. Such a study opens up new avenues into the rational design of nanodiagnosis and treatment agents for NIR-II PA imaging and cancer therapy.


Assuntos
Técnicas Fotoacústicas , Ressonância de Plasmônio de Superfície , Tungstênio , Animais , Humanos , Camundongos , Tungstênio/química , Raios Infravermelhos , Óxidos/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Nanopartículas/química , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo
2.
Eur J Med Chem ; 272: 116474, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735149

RESUMO

Small molecule photosensitizers for combined in vivo tailored cancer diagnostics and photodynamic/photothermal therapy are desperately needed. Monoamine oxidase A (MAO-A)-activated therapeutic and diagnostic compounds provide great selectivity because MAO-A can be employed as a biomarker for associated Tumors. In order to screen photosensitizers with photodynamic therapeutic potential, we have created a range of near-infrared fluorescent molecules in this work by combining dihydroxanthene parent with various heterocyclic fluorescent dyes. The NIR fluorescent diagnostic probe, DHMQ, was created by combining the screened fluorescent dye matrices with the propylamino group, which is the recognition moiety of MAO-A, based on the oxidative deamination mechanism of the enzyme. This probe has a low toxicity level and can identify MAO-A precisely. It has the ability to use fluorescence imaging on mice and cells to track MAO-A activity in real-time. It has strong phototoxicity and can produce singlet oxygen when exposed to laser light. The temperature used in photothermal imaging can get up to 50 °C, which can harm tumor cells permanently and have a positive phototherapeutic impact on tumors grown from SH-SY5Y xenograft mice. The concept of using MAO-A effectively in diseases is expanded by the MAO-A-activated diagnostic-integrated photosensitizers, which offer a new platform for in vivo cancer diagnostics and targeted anticancer treatment.


Assuntos
Monoaminoxidase , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Animais , Humanos , Monoaminoxidase/metabolismo , Camundongos , Xantenos/química , Xantenos/farmacologia , Xantenos/síntese química , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos Nus
3.
Anal Chem ; 96(19): 7687-7696, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693877

RESUMO

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Assuntos
Imagem Óptica , Pontos Quânticos , Compostos de Prata , Pontos Quânticos/química , Compostos de Prata/química , Humanos , Animais , Camundongos , Raios Infravermelhos , Nanomedicina Teranóstica , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio
4.
Nanoscale ; 16(17): 8597-8606, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602353

RESUMO

Frequently, subcellular-targeted drugs tend to accumulate in lysosomes after cellular absorption, a process termed the lysosomal trap. This accumulation often interferes with the drug's ability to bind to its target, resulting in decreased efficiency. Existing methods for addressing lysosome-induced drug resistance mainly involve improving the structures of small molecules or enveloping drugs in nanomaterials. Nonetheless, these approaches can lead to changes in the drug structure or potentially trigger unexpected reactions within organisms. To address these issues, we introduced a strategy that involves inactivating the lysosome with the use of Ag nanoparticles (Cy3.5@Ag NPs). In this method, the Cy3.5@Ag NPs gradually accumulate inside lysosomes, leading to permeation of the lysosomal membrane and subsequent lysosomal inactivation. In addition, Cy3.5@Ag NPs also significantly affected the motility of lysosomes and induced the occurrence of lysosome passivation. Importantly, coincubating Cy3.5@Ag NPs with various subcellular-targeted drugs was found to significantly increase the efficiency of these treatments. Our strategy illustrates the potential of using lysosomal inactivation to enhance drug efficacy, providing a promising therapeutic strategy for cancer.


Assuntos
Lisossomos , Nanopartículas Metálicas , Prata , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
5.
Anal Chem ; 96(13): 5323-5330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501982

RESUMO

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Guanina/análogos & derivados , Humanos , DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Dano ao DNA , Biomarcadores , Reparo do DNA
6.
ACS Sens ; 9(3): 1280-1289, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38456635

RESUMO

DNA motors have attracted extensive interest in biosensing and bioimaging. However, the amplification capacity of the existing DNA motor systems is limited since the products from the walking process are unable to feedback into the original DNA motor systems. As a result, the sensitivities of such systems are limited in the contexts of biosensing and bioimaging. In this study, we report a novel self-feedback DNAzyme motor for the sensitive imaging of tumor-related mRNA in live cells and in vivo with cascade signal amplification capacity. Gold nanoparticles (AuNPs) are modified with hairpin-locked DNAzyme walker and track strands formed by hybridizing Cy5-labeled DNA trigger-incorporated substrate strands with assistant strands. Hybridization of the target mRNA with the hairpin strands activates DNAzyme and promotes the autonomous walking of DNAzyme on AuNPs through DNAzyme-catalyzed substrate cleavage, resulting in the release of many Cy5-labeled substrate segments containing DNA triggers and the generation of an amplified fluorescence signal. Moreover, each released DNA trigger can also bind with the hairpin strand to activate and operate the original motor system, which induces further signal amplification via a feedback mechanism. This motor exhibits a 102-fold improvement in detection sensitivity over conventional DNAzyme motors and high selectivity for target mRNA. It has been successfully applied to distinguish cancer cells from normal cells and diagnose tumors in vivo based on mRNA imaging. The proposed DNAzyme motor provides a promising paradigm for the amplified detection and sensitive imaging of low-abundance biomolecules in vivo.


Assuntos
Carbocianinas , DNA Catalítico , Nanopartículas Metálicas , DNA Catalítico/química , Ouro/química , Retroalimentação , Nanopartículas Metálicas/química , DNA/química
7.
Talanta ; 273: 125952, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513474

RESUMO

A double 3D DNA walker nanomachine by DNAzyme self-driven positive feedback loop amplification for the detection of miRNA was constructed. This method uses two gold nanoparticles as the reaction core, and because of the spatial confinement effect the local concentration of the reactants increase the collision efficiency was greatly improved. Meanwhile, the introduction of positive feedback loop promotes the conversion efficiency. In presence of miRNA-21, a large amount of DNAzyme was released and hydrolyze the reporter probe, resulting the recovery of fluorescence signal. The linear range for miRNA-21 is 0.5-60 pmol/L, and the detection limit is 0.41 pmol/L (S/N = 3). This nanomachine has been successfully used for accurate detection of miRNA-21 expression levels in cell lysates. At the same time, it can enter cells for intracellular miRNA-21 fluorescence imaging, distinguishing tumor cells from normal cells. This combination of in vitro detection and imaging analysis of living cells can achieve the goal of jointly detecting cancer markers through multiple pathways, providing new ideas for early diagnosis and screening of diseases.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , MicroRNAs , MicroRNAs/análise , DNA Catalítico/metabolismo , Ouro , Retroalimentação , DNA/genética , Técnicas Biossensoriais/métodos , Limite de Detecção
8.
Bioorg Chem ; 145: 107156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387393

RESUMO

A real-time and specific for the detection of Monoamine Oxidase B (MAO-B) to investigate the MAO-B-relevant disease development and treatment process is urgently desirable. Here, we utilized MAO-B to catalyze the conversion of propylamino groups to aldehyde groups, which was then quickly followed by a ß-elimination process to produce fluorescent probes (FNJP) that may be used to detect MAO-B in vitro and in vivo. The FNJP probe possesses unique properties, including favorable reactivity (Km = 10.8 µM), high cell permeability, and NIR characteristics (λem = 610 nm). Moreover, the FNJP probe showed high selectivity for MAO-B and was able to detect endogenous MAO-B levels from a mixed population of NIH-3 T3 and HepG2 cells. MAO-B expression was found to be increased in cells under lipopolysaccharide-stimulated cellular oxidative stress in neuronal-like SH-SY5Y cells. In addition, the visualization of FNJP for MAO-B activity in zebrafish can be an effective tool for exploring the biofunctions of MAO-B. Considering these excellent properties, the FNJP probe may be a powerful tool for detecting MAO-B levels in living organisms and can be used for accurate clinical diagnoses of related diseases.


Assuntos
Monoaminoxidase , Neuroblastoma , Animais , Humanos , Monoaminoxidase/metabolismo , Peixe-Zebra/metabolismo , Fluorescência , Células Hep G2 , Corantes Fluorescentes , Inibidores da Monoaminoxidase
9.
Int J Surg ; 110(5): 2757-2764, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349216

RESUMO

BACKGROUND: This prospective cohort study, conducted at a high-volume esophageal cancer center from July 2019 to July 2022, aimed to investigate the link between the right gastroepiploic artery (RGEA) length and anastomotic leakage (AL) rates following minimally invasive esophagectomy (MIE). Real-world data on stomach blood supply in the Chinese population were examined. MATERIALS AND METHODS: A total of 516 cases were enrolled, categorized into two groups based on the Youden index-determined optimal cut-off value for the relative length of RGEA (length of RGEA/length of gastric conduit, 64.69%) through ROC analysis: Group SR (short RGEA) and Group LR (long RGEA). The primary observation parameter was the relationship between AL incidence and the ratio of direct blood supply from RGEA. Secondary parameters included the mean length of the right gastroepiploic artery, greater curvature, and the connection type between right and left gastroepiploic vessels. Patient data were prospectively recorded in electronic case report forms. RESULTS: The study revealed median lengths of 43.60 cm for greater curvature, 43.16 cm for the gastric conduit, and 26.75 cm for RGEA. AL, the most common postoperative complication, showed a significant difference between groups (16.88 vs. 8.84%, P =0.01). Multivariable binary logistic regression identified Group SR and LR (odds ratio: 2.651, 95% CI: 1.124-6.250, P =0.03) and Neoadjuvant therapy (odds ratio: 2.479, 95% CI: 1.374-4.473, P =0.00) as independent predictors of AL. CONCLUSIONS: The study emphasizes the crucial role of RGEA length in determining AL incidence in MIE for esophageal cancer. Preserving RGEA and fostering capillary arches between RGEA and LGEA are recommended strategies to mitigate AL risk.


Assuntos
Fístula Anastomótica , Neoplasias Esofágicas , Esofagectomia , Artéria Gastroepiploica , Humanos , Esofagectomia/efeitos adversos , Neoplasias Esofágicas/cirurgia , Fístula Anastomótica/etiologia , Fístula Anastomótica/epidemiologia , Masculino , Estudos Prospectivos , Feminino , Pessoa de Meia-Idade , Idoso , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , China/epidemiologia
10.
Neuro Oncol ; 26(6): 1027-1041, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38285005

RESUMO

BACKGROUND: Glioblastoma (GBM) is characterized by chromosome 7 copy number gains, notably 7q34, potentially contributing to therapeutic resistance, yet the underlying oncogenes have not been fully characterized. Pertinently, the significance of long noncoding RNAs (lncRNAs) in this context has gained attention, necessitating further exploration. METHODS: FAM131B-AS2 was quantified in GBM samples and cells using qPCR. Overexpression and knockdown of FAM131B-AS2 in GBM cells were used to study its functions in vivo and in vitro. The mechanisms of FAM131B-AS2 were studied using RNA-seq, qPCR, Western blotting, RNA pull-down, coimmunoprecipitation assays, and mass spectrometry analysis. The phenotypic changes that resulted from FAM131B-AS2 variation were evaluated through CCK8 assay, EdU assay, comet assay, and immunofluorescence. RESULTS: Our analysis of 149 primary GBM patients identified FAM131B-AS2, a lncRNA located in the 7q34 region, whose upregulation predicts poor survival. Mechanistically, FAM131B-AS2 is a crucial regulator of the replication stress response, stabilizing replication protein A1 through recruitment of ubiquitin-specific peptidase 7 and activating the ataxia telangiectasia and rad3-related protein kinase pathway to protect single-stranded DNA from breakage. Furthermore, FAM131B-AS2 overexpression inhibited CD8+ T-cell infiltration, while FAM131B-AS2 inhibition activated the cGAS-STING pathway, increasing lymphocyte infiltration and improving the response to immune checkpoint inhibitors. CONCLUSIONS: FAM131B-AS2 emerges as a promising indicator for adjuvant therapy response and could also be a viable candidate for combined immunotherapies against GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , RNA Longo não Codificante , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , RNA Longo não Codificante/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Variações do Número de Cópias de DNA , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Prognóstico , Progressão da Doença , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células Tumorais Cultivadas , Replicação do DNA , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Taxa de Sobrevida , Camundongos Nus , Linhagem Celular Tumoral , Masculino , Feminino
11.
Comput Biol Med ; 170: 107941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217976

RESUMO

Immunotherapy is an emerging treatment method aimed at activating the human immune system and relying on its own immune function to kill cancer cells and tumor tissues. It has the advantages of wide applicability and minimal side effects. Effective identification of tumor T cell antigens (TTCAs) will help researchers understand their functions and mechanisms and carry out research on anti-tumor vaccine development. Considering that using biological experimental technology to identify TTCAs can be costly and time-consuming, it is necessary to develop a robust bioinformatics computing tool. At present, different machine learning models have been proposed for identifying TTCAs, but there is still room for further improvement in their performance. To establish a TTCA predictor with better prediction performance, we propose a prediction model called iTTCA-MVL in this paper. We extracted three sets of features from the views of physicochemical information and sequence statistics, namely the distribution descriptor of composition, transition, and distribution (CTDD), TF-IDF, and LSA topic. Then, we used least squares support vector machines (LSSVMs) as submodels and Hilbert‒Schmidt independence criteria (HSIC) as constraints to establish an independent and complementary multi-view learning model. The prediction accuracy of iTTCA-MVL on the independent test set is 0.873, and Matthew's correlation coefficient is 0.747, which is significantly better than those of existing methods. Therefore, iTTCA-MVL is an excellent prediction tool that researchers can use to accurately identify TTCAs.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Humanos , Biologia Computacional/métodos , Linfócitos T
12.
Nat Med ; 30(3): 749-761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287168

RESUMO

Adjuvant chemotherapy benefits patients with resected pancreatic ductal adenocarcinoma (PDAC), but the compromised physical state of post-operative patients can hinder compliance. Biomarkers that identify candidates for prompt adjuvant therapy are needed. In this prospective observational study, 1,171 patients with PDAC who underwent pancreatectomy were enrolled and extensively followed-up. Proteomic profiling of 191 patient samples unveiled clinically relevant functional protein modules. A proteomics-level prognostic risk model was established for PDAC, with its utility further validated using a publicly available external cohort. More importantly, through an interaction effect regression analysis leveraging both clinical and proteomic datasets, we discovered two biomarkers (NDUFB8 and CEMIP2), indicative of the overall sensitivity of patients with PDAC to adjuvant chemotherapy. The biomarkers were validated through immunohistochemistry on an internal cohort of 386 patients. Rigorous validation extended to two external multicentic cohorts-a French multicentric cohort (230 patients) and a cohort from two grade-A tertiary hospitals in China (466 patients)-enhancing the robustness and generalizability of our findings. Moreover, experimental validation through functional assays was conducted on PDAC cell lines and patient-derived organoids. In summary, our cohort-scale integration of clinical and proteomic data demonstrates the potential of proteomics-guided prognosis and biomarker-aided adjuvant chemotherapy for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteômica , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Estudos Prospectivos
13.
Surg Endosc ; 38(2): 821-829, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38066192

RESUMO

BACKGROUND: Studies have demonstrated that the learning curve plays an important role in robotic pancreatoduodenectomy (RPD). Although improved short-term outcomes of RPD after the learning curve have been reported compared to open pancreatoduodenectomy (OPD), there is a lack of long-term survival analyses. METHODS: Patients who underwent curative intended RPD and OPD for pancreatic duct adenocarcinoma (PDAC) between January 2017 and June 2020 were retrospectively reviewed. A 1:2 propensity score matching (PSM) analysis was performed to balance the baseline characteristics between the RPD and OPD groups. RESULTS: Of the 548 patients (108 RPD and 440 OPD), 103 RPD patients were matched with 206 OPD patients after PSM. There were 194 (62.8%) men and 115 (37.2%) women, with a median age of 64 (58-69) years. The median overall survival (OS) in the RPD group was 33.2 months compared with 25.7 months in the OPD group (p = 0.058, log-rank). The median disease-free survival (DFS) following RPD was longer than the OPD (18.5 vs. 14.0 months, p = 0.011, log-rank). The RPD group has a lower incidence of local recurrence compared the OPD group (36.9% vs. 51.2%, p = 0.071). Multivariate Cox analysis demonstrated that RPD was independently associated with improved OS (HR 0.70, 95% CI 0.52-0.94, p = 0.019) and DFS (HR 0.66, 95% CI 0.50-0.88, p = 0.005). CONCLUSION: After the learning curve, RPD had improved oncologic outcomes in PDAC patients compared to OPD. Future prospective randomized clinical trials will be required to validate these findings.


Assuntos
Carcinoma Ductal Pancreático , Laparoscopia , Neoplasias Pancreáticas , Procedimentos Cirúrgicos Robóticos , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Pancreaticoduodenectomia/efeitos adversos , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Neoplasias Pancreáticas/cirurgia , Pontuação de Propensão , Curva de Aprendizado , Carcinoma Ductal Pancreático/cirurgia , Ductos Pancreáticos , Complicações Pós-Operatórias/etiologia
14.
Cancer Res ; 84(3): 372-387, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963207

RESUMO

Neuronal activity can drive progression of high-grade glioma by mediating mitogen production and neuron-glioma synaptic communications. Glioma stem cells (GSC) also play a significant role in progression, therapy resistance, and recurrence in glioma, which implicates potential cross-talk between neuronal activity and GSC biology. Here, we manipulated neuronal activity using chemogenetics in vitro and in vivo to study how it influences GSCs. Neuronal activity supported glioblastoma (GBM) progression and radioresistance through exosome-induced proneural-to-mesenchymal transition (PMT) of GSCs. Molecularly, neuronal activation led to elevated miR-184-3p in neuron-derived exosomes that were taken up by GSCs and reduced the mRNA N6-methyladenosine (m6A) levels by inhibiting RBM15 expression. RBM15 deficiency decreased m6A modification of DLG3 mRNA and subsequently induced GSC PMT by activating the STAT3 pathway. Loss of miR-184-3p in cortical neurons reduced GSC xenograft growth, even when neurons were activated. Levetiracetam, an antiepileptic drug, reduced the neuronal production of miR-184-3p-enriched exosomes, inhibited GSC PMT, and increased radiosensitivity of tumors to prolong survival in xenograft mouse models. Together, these findings indicate that exosomes derived from active neurons promote GBM progression and radioresistance by inducing PMT of GSCs. SIGNIFICANCE: Active neurons secrete exosomes enriched with miR-184-3p that promote glioblastoma progression and radioresistance by driving the proneural-to-mesenchymal transition in glioma stem cells, which can be reversed by antiseizure medication levetiracetam.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , Humanos , Animais , Camundongos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Levetiracetam/metabolismo , Levetiracetam/uso terapêutico , Células-Tronco Neoplásicas/patologia , Glioma/patologia , Neurônios/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética
15.
Clin Cancer Res ; 30(6): 1160-1174, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37855702

RESUMO

PURPOSE: Neuronal activity in the brain has been reported to promote the malignant progression of glioma cells via nonsynaptic paracrine and electrical synaptic integration mechanisms. However, the interaction between neuronal activity and the immune microenvironment in glioblastoma (GBM) remains largely unclear. EXPERIMENTAL DESIGN: By applying chemogenetic techniques, we enhanced and inhibited neuronal activity in vitro and in a mouse model to study how neuronal activity regulates microglial polarization and affects GBM progression. RESULTS: We demonstrate that hypoxia drove glioma stem cells (GSC) to produce higher levels of glutamate, which activated local neurons. Neuronal activity promoted GBM progression by facilitating microglial M2 polarization through enriching miR-200c-3p in neuron-derived exosomes, which decreased the expression of the m6A writer zinc finger CCCH-type containing 13 (ZC3H13) in microglia, impairing methylation of dual specificity phosphatase 9 (DUSP9) mRNA. Downregulation of DUSP9 promoted ERK pathway activation, which subsequently induced microglial M2 polarization. In the mouse model, cortical neuronal activation promoted microglial M2 polarization whereas cortical neuronal inhibition decreased microglial M2 polarization in GBM xenografts. miR-200c-3p knockdown in cortical neurons impaired microglial M2 polarization and GBM xenograft growth, even when cortical neurons were activated. Treatment with the anti-seizure medication levetiracetam impaired neuronal activation and subsequently reduced neuron-mediated microglial M2 polarization. CONCLUSIONS: These findings indicated that hypoxic GSC-induced neuron activation promotes GBM progression by polarizing microglia via the exosomal miR-200c-3p/ZC3H13/DUSP9/p-ERK pathway. Levetiracetam, an antiepileptic drug, blocks the abnormal activation of neurons in GBM and impairs activity-dependent GBM progression. See related commentary by Cui et al., p. 1073.


Assuntos
Adenina/análogos & derivados , Glioblastoma , Glioma , MicroRNAs , Camundongos , Animais , Humanos , Microglia , MicroRNAs/genética , MicroRNAs/metabolismo , Levetiracetam/metabolismo , Glioma/patologia , Glioblastoma/patologia , Hipóxia/metabolismo , Neurônios , Desmetilação , Microambiente Tumoral/genética
16.
Adv Sci (Weinh) ; 11(11): e2306375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161215

RESUMO

Tumor metastasis remains a leading factor in the failure of cancer treatments and patient mortality. To address this, a silver-induced absorption red-shifted core-shell nano-particle is developed, and surface-modified with triphenylphosphonium bromide (TPP) and hyaluronic acid (HA) to obtain a novel nanodiagnosis-treatment agent (Ag@CuS-TPP@HA). This diagnosis-treatment agent can dual-targets cancer cells and mitochondria, and exhibits maximal light absorption at 1064 nm, thereby enhancing nesr-infrared II (NIR-II) photoacoustic (PA) signal and photothermal effects under 1064 nm laser irradiation. Additionally, the silver in Ag@CuS-TPP@HA can catalyze the Fenton-like reactions with H2 O2 in the tumor tissue, yielding reactive oxygen species (ROS). The ROS production, coupled with enhanced photothermal effects, instigates immunogenic cell death (ICD), leading to a substantial release of tumor-associated antigens (TAAs) and damage-associated molecular patterns, which have improved the tumor immune suppression microenvironment and boosting immune checkpoint blockade therapy, thus stimulating a systemic antitumor immune response. Hence, Ag@CuS-TPP@HA, as a cancer diagnostic-treatment agent, not only accomplishes targeted the NIR-II PA imaging of tumor tissue and addresses the challenge of accurate diagnosis of deep cancer tissue in vivo, but it also leverages ROS/photothermal therapy to enhance immune checkpoint blockade, thereby eliminating primary tumors and effectively inhibiting distant tumor growth.


Assuntos
Antineoplásicos , Neoplasias , Compostos Organofosforados , Técnicas Fotoacústicas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Prata , Inibidores de Checkpoint Imunológico , Técnicas Fotoacústicas/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/terapia , Microambiente Tumoral
17.
Anal Chem ; 96(1): 85-91, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128902

RESUMO

Cellular trace proteins are critical for maintaining normal cell functions, with their quantitative analysis in individual cells aiding our understanding of the role of cell proteins in biological processes. This study proposes a strategy for the quantitative analysis of alpha-fetoprotein in single cells, utilizing a lysosome microenvironment initiation and a DNAzyme-assisted intracellular signal amplification technique based on electrophoretic separation. A nanoprobe targeting lysosomes was prepared, facilitating the intracellular signal amplification of alpha-fetoprotein. Following intracellular signal amplification, the levels of alpha-fetoprotein (AFP) in 20 HepG2 hepatoma cells and 20 normal HL-7702 hepatocytes were individually evaluated using microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF). Results demonstrated overexpression of alpha-fetoprotein in hepatocellular carcinoma cells. This strategy represents a novel technique for single-cell protein analysis and holds significant potential as a powerful tool for such analyses.


Assuntos
Carcinoma Hepatocelular , DNA Catalítico , Eletroforese em Microchip , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/análise , Eletroforese em Microchip/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Lisossomos/química , Carcinoma Hepatocelular/patologia , Microambiente Tumoral
18.
Chem Commun (Camb) ; 59(76): 11381-11384, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37665627

RESUMO

A novel biodegradable layered double hydroxide-copper selenide nanocomplex was prepared by anchoring copper selenide on manganese iron layered double hydroxide nanosheets. This nanocomplex can specifically release CuSe, Mn2+ and Fe3+ in the tumor microenvironment, which implements NIR-II photoacoustic imaging-guided synergistic cancer therapy under 1064 nm laser irradiation.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Manganês , Cobre , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Hidróxidos , Ferro , Microambiente Tumoral
19.
Nanoscale ; 15(33): 13574-13582, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37555269

RESUMO

Patients with ß-thalassemia are prone to complications such as cardiovascular diseases and secretory gland injury due to iron overload (IO) and reactive oxygen species (ROS) production caused by blood transfusions. Simultaneously scavenging ROS and eliminating IO using nanomedicine remains challenging. Herein, we designed a dual-functional Ce-based metal-organic framework@polydopamine (Ce-MOF@PDA) composite that integrates oxidative stress reduction and IO elimination and evaluated its protective effect on IO injury in thalassemia. Using Ce-MOF with multiple active sites as the core, dopamine, which can coordinate iron ions, was modified on the surface of Ce-MOF and spontaneously polymerized to obtain PDA with iron elimination ability. Dopamine modification also adjusted the Ce3+/Ce4+ ratio to further enhance the catalytic activity for scavenging ROS. Ce-MOF@PDA exhibited multiple nanozyme activities, such as superoxide dismutase- and catalase-like activities, and decreased iron-mediated oxidative stress levels in vitro. Furthermore, the serum ferritin levels and iron concentrations in the liver of IO mice were reduced following treatment with Ce-MOF@PDA, and the fecal clearance ability was comparable to that of deferoxamine. These results indicate that Ce-MOF@PDA can eliminate IO while scavenging ROS and reduce tissue damage caused by oxidative stress. Therefore, the Ce-MOF@PDA nanozyme is a promising therapeutic nanomedicine for treating thalassemia IO.


Assuntos
Sobrecarga de Ferro , Talassemia , Animais , Camundongos , Ferro , Espécies Reativas de Oxigênio , Dopamina/farmacologia , Talassemia/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/complicações
20.
ACS Appl Mater Interfaces ; 15(32): 38309-38322, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534669

RESUMO

The development of tumor microenvironment (TME)-activated nanoassemblies which can produce a photoacoustic (PA) signal and enhance the H2O2 level is critical to achieve accurate diagnosis and highly efficient chemodynamic therapy (CDT). In this study, we developed nanoassemblies consisting of oxygen vacancy titanium dioxide (TiO2-x) surface-constructed copper, sulfur-doped mesoporous organosilica and glucose oxidase (TiO2-x@Cu,S-MONs@GOx, hereafter TMG). We found that highly abundant glutathione (GSH) in the TME nanoassemblies can reduce tetrasulfide bonds and Cu2+ to sulfur ions and Cu+ in the TMG nanoassemblies, respectively, causing the breakage of the tetrasulfide bond and the mesoporous structure collapse, releasing Cu+ ions and TiO2-x nanoparticles, and producing hydrogen sulfide gas, thereby achieving synergistic multimodal tumor treatment through TME-activated NIR-II PA imaging and photothermal-enhanced gas starvation-primed CDT. Therefore, the TMG nanoassemblies form a smart nanoplatform that can serve as an excellent tumor diagnosis-treatment agent by playing an important role in imaging-guided precision diagnosis of cancer and efficient targeting treatment.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Inanição , Humanos , Cobre , Peróxido de Hidrogênio , Glutationa , Nanopartículas/uso terapêutico , Enxofre , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA