Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 259: 115711, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572539

RESUMO

Acute myeloid leukemia (AML) is a prevalent hematological tumor associated with a high morbidity and mortality rate. CDK9, functioning as a pivotal transcriptional regulator, facilitates transcriptional elongation through phosphorylation of RNA polymerase II, which further governs the protein levels of Mcl-1 and c-Myc. Therefore, CDK9 has been considered as a promising therapeutic target for AML treatment. Here, we present the design, synthesis, and evaluation of CDK9 inhibitors bearing a flavonoid scaffold. Among them, compound 21a emerged as a highly selective CDK9 inhibitor (IC50 = 6.7 nM), exhibiting over 80-fold selectivity towards most other CDK family members and high kinase selectivity. In Mv4-11 cells, 21a effectively hindered cell proliferation (IC50 = 60 nM) and induced apoptosis by down-regulating Mcl-1 and c-Myc. Notably, 21a demonstrated significant inhibition of tumor growth in the Mv4-11 xenograft tumor model. These findings indicate that compound 21a holds promise as a potential candidate for treating AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/patologia , Apoptose , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo
2.
Respir Res ; 24(1): 202, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592245

RESUMO

Right heart failure is the leading cause of death in pulmonary hypertension (PH), and echocardiography is a commonly used tool for evaluating the risk hierarchy of PH. However, few studies have explored the dynamic changes in the structural and functional changes of the right heart during the process of PH. Previous studies have found that pulmonary circulation coupling right ventricular adaptation depends on the degree of pressure overload and other factors. In this study, we performed a time-dependent evaluation of right heart functional changes using transthoracic echocardiography in a SU5416 plus hypoxia (SuHx)-induced PH rat model. Rats were examined in 1-, 2-, 4-, and 6-week using right-heart catheterization, cardiac echocardiography, and harvested heart tissue. Our study found that echocardiographic measures of the right ventricle (RV) gradually worsened with the increase of right ventricular systolic pressure, and right heart hypofunction occurred at an earlier stage than pulmonary artery thickening during the development of PH. Furthermore, sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2), a marker of myocardial damage, was highly expressed in week 2 of SuHx-induced PH and had higher levels of expression of γ-H2AX at all timepoints, as well as higher levels of DDR-related proteins p-ATM and p53/p-p53 and p21 in week 4 and week 6. Our study demonstrates that the structure and function of the RV begin to deteriorate with DNA damage and cellular senescence during the early stages of PH development.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Animais , Ratos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/diagnóstico por imagem , Proteína Supressora de Tumor p53 , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/diagnóstico por imagem , Ecocardiografia , Dano ao DNA , Hipóxia/complicações
3.
Eur J Med Chem ; 233: 114228, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35245830

RESUMO

A series of novel biphenyl-based scaffold derivatives were identified as selective histone deacetylase 6 (HDAC6) inhibitors through an in-house compound library screening approach. The biological evaluation indicated that most of target compounds exhibited moderate to good inhibitory activity and selectivity against HDAC6. Especially, compound C10 was identified as a potent and highly selective HDACs inhibitor, with HDAC1 IC50 value of 3600 nM, HDAC6 IC50 value of 23 nM, and the HDAC1/6 selectivity index of 157. Moreover, C10 displayed robust anti-proliferative activity, induced cancer cells apoptosis, increased the level of acetylated α-tubulin and inhibited cancer cells migration in vitro. C10 showed significant antitumor efficacy (TGI: 75%) in CT26 colon carcinoma xenograft model in mice with no considerable toxicity in vivo. More importantly, C10 could also activate antitumor immunity so as to synergistically exert antitumor effects in vivo. Overall, our findings have provided a new avenue for design, development and investigation into the mechanism underlying the antitumor efficacy of selective HDAC6 inhibitors.


Assuntos
Antineoplásicos , Animais , Antineoplásicos/farmacologia , Compostos de Bifenilo , Proliferação de Células , Relação Dose-Resposta a Droga , Histona Desacetilase 1/metabolismo , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
4.
Pulm Circ ; 10(4): 2045894020956592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282184

RESUMO

Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O2 saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca2+ signaling and Ca2+ influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca2+ or Ca2+ influx through various Ca2+-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca2+ abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca2+ channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca2+-sensing receptors (by 30 µM NPS2143, an allosteric Ca2+-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca2+ influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca2+ entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca2+-mediated activation of Ca2+-sensing receptors and the cell-cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction.

5.
Eur J Med Chem ; 178: 782-801, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31238183

RESUMO

Wogonin, a natural product isolated from the plant Scutellaria baicalensis, has been shown to be a potent and selective inhibitor of CDK9. With the purpose of investigating the activity and selectivity of this chemical scaffold, several series of wogonin derivatives were prepared and screened for CDK9 inhibition and cellular antiproliferative activity. Among these compounds, the drug-like compound 51 showed potent activity against CDK9 (IC50 = 19.9 nM) and MV4-11 cell growth (IC50 = 20 nM). In addition, compound 51 showed much improved physicochemical properties, such as water solubility, compared with the parent compound wogonin. The follow-up studies showed that the compound 51 is selective toward CDK9-overexpressing cancer cells over normal cells. Preliminary mechanism studies on the anticancer effect indicated that 51 inhibited the proliferation of MV4-11 cells via caspase-dependent apoptosis. In addition, highlighted compound 51 showed significant antitumor activity in mouse acute myeloid leukemia (AML) models without producing apparent toxic effects in vivo, which gave us a new tool for further investigation of CDK9-targeted inhibitor as a potential antitumor drug especially for AML.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Flavanonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Flavanonas/síntese química , Flavanonas/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA