Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 477: 116679, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689368

RESUMO

Autophagy is a fundamental recycling pathway that enhances cellular resilience, promoting survival. However, this survival mechanism can impede anti-cancer treatment strategies designed to induce cell death. In this study, we identified a novel autophagy inhibitor, Fangchinoline (Fan) isolated from the traditional Chinese medicine Stephania tetrandra. We speculated that when Fan blocks autophagy, cancer cells lose substantial self-preservation abilities during treatment. Firstly, we examined in detail the mechanism through which Fan inhibits autophagy. Specifically, Fan induced a significant increase in autophagosomes, as indicated by GFP-LC3 labeling, confirmed by the up-regulation of LC3-II. The autophagy receptor protein p62 was also up-regulated, suggesting a potential inhibition of autophagy flux. We further ruled out the possibility of fusion barriers between lysosomes and autophagosomes, as confirmed by their co-localization in double fluorescence staining. However, the lysosomal acid environment might be compromised, as suggested by the diminished fluorescence of acidity-sensitive dyes in the lysosomes and the corresponding decrease in mature forms of lysosomal cathepsin. To test the anti-cancer potential of Fan, we combined it with Cisplatin (Cis) or Paclitaxel (PTX) for lung cancer cell treatment. This combined treatment demonstrated a synergistically enhanced killing effect. These promising anti-tumor results were also replicated in a xenografted tumor model. The significance of this research lies in the identification of Fan as a potent autophagy inhibitor and its potential to enhance the efficacy of existing anti-cancer drugs. By unraveling the mechanisms of Fan's action on autophagy and demonstrating its synergistic effect in combination therapies, our study provides valuable insights for developing novel strategies to overcome autophagy-mediated resistance in cancer treatment.

2.
Chin Med ; 18(1): 68, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287052

RESUMO

BACKGROUND: Clinically, although chemotherapy is one of the most commonly used methods of treating tumors, chemotherapeutic drugs can induce autophagic flux and increase tumor cell resistance, leading to drug tolerance. Therefore, theoretically, inhibiting autophagy may improve the efficacy of chemotherapy. The discovery of autophagy regulators and their potential application as adjuvant anti-cancer drugs is of substantial importance. In this study, we clarified that Fangjihuangqi Decoction (FJHQ, traditional Chinese medicine) is an autophagy inhibitor, which can synergistically enhance the effect of cisplatin and paclitaxel on non-small cell lung cancer (NSCLC) cells. METHODS: We observed the changes of autophagy level in NSCLC cells under the effect of FJHQ, and verified the level of the autophagy marker protein and cathepsin. Apoptosis was detected after the combination of FJHQ with cisplatin or paclitaxel, and NAC (ROS scavenger) was further used to verify the activation of ROS-MAPK pathway by FJHQ. RESULTS: We observed that FJHQ induced autophagosomes in NSCLC cells and increased the levels of P62 and LC3-II protein expression in a concentration- and time-gradient-dependent manner, indicating that autophagic flux was inhibited. Co-localization experiments further showed that while FJHQ did not inhibit autophagosome and lysosome fusion, it affected the maturation of cathepsin and thus inhibited the autophagic pathway. Finally, we found that the combination of FJHQ with cisplatin or paclitaxel increased the apoptosis rate of NSCLC cells, due to increased ROS accumulation and further activation of the ROS-MAPK pathway. This synergistic effect could be reversed by NAC. CONCLUSION: Collectively, these results demonstrate that FJHQ is a novel late-stage autophagy inhibitor that can amplify the anti-tumor effect of cisplatin and paclitaxel against NSCLC cells.

3.
Cell Biol Toxicol ; 39(4): 1297-1317, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36070022

RESUMO

Autophagy is typically activated in cancer cells as a rescue strategy in response to cellular stress (e.g., chemotherapy). Herein, we found that Berbamine Hydrochloride (Ber) can act as an effective inhibitor of the late stage of autophagic flux, thereby potentiating the killing effect of chemotherapy agents. Lung carcinoma cells exposed to Ber exhibited increased autophagosomes, marked by LC3-II upregulation. The increased level of p62 after Ber treatment indicated that the autophagic flux was blocked at the late stage. The lysosome staining assay and cathepsin maturation detection indicated impaired lysosomal acidification. We found that Nox2 exhibited intensified co-localization with lysosomes in Ber-treated cells. Nox2 is a key enzyme for superoxide anion production capable of transferring electrons into the lysosomal lumen, thereby neutralizing the inner protons; this might explain the aberrant acidification. This hypothesis is further supported by the observed reversal of lysosomal cathepsin maturation by Nox2 inhibitors. Finally, Ber combined with cisplatin exhibited a synergistic killing effect on lung carcinoma cells. Further data suggested that lung carcinoma cells co-treated with Ber and cisplatin accumulated excessive reactive oxygen species (ROS), which typically activated MAPK-mediated mitochondria-dependent apoptosis. The enhanced anti-cancer effect of Ber combined with cisplatin was also confirmed in an in vivo xenograft mouse model. These findings indicate that Ber might be a promising adjuvant for enhancing the cancer cell killing effect of chemotherapy via the inhibition of autophagy. In this process, Nox2 might be a significant mediator of Ber-induced aberrant lysosomal acidification.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia , Apoptose , Lisossomos/metabolismo , Pulmão/metabolismo , Concentração de Íons de Hidrogênio , Catepsinas/metabolismo , Catepsinas/farmacologia , Catepsinas/uso terapêutico , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo
4.
Sci Rep ; 12(1): 10040, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710862

RESUMO

Melanoma is the most lethal type of skin cancer. Despite the breakthroughs in the clinical treatment of melanoma using tumor immunotherapy, many patients do not benefit from these immunotherapies because of multiple immunosuppressive mechanisms. Therefore, there is an urgent need to determine the mechanisms of tumor-immune system interactions and their molecular determinants to improve cancer immunotherapy. In this study, combined analysis of microarray data and single-cell RNA sequencing data revealed the key interactions between immune cells in the melanoma microenvironment. First, differentially expressed genes (DEGs) between normal and malignant tissues were obtained using GEO2R. The DEGs were then subjected to downstream analyses, including enrichment analysis and protein-protein interaction analysis, indicating that these genes were associated with the immune response of melanoma. Then, the GEPIA and TIMER databases were used to verify the differential expression and prognostic significance of hub genes, and the relationship between the hub genes and immune infiltration. In addition, we combined single cell analysis from GSE123139 to identify immune cell types, and validated the expression of the hub genes in these immune cells. Finally, cell-to-cell communication analysis of the proteins encoded by the hub genes and their interactions was performed using CellChat. We found that the CCL5-CCR1, SELPLG-SELL, CXCL10-CXCR3, and CXCL9-CXCR3 pathways might play important roles in the communication between the immune cells in tumor microenvironment. This discovery may reveal the communication basis of immune cells in the tumor microenvironment and provide a new idea for melanoma immunotherapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/patologia , Prognóstico , Neoplasias Cutâneas/genética , Transcriptoma , Microambiente Tumoral/genética
5.
Biomed Pharmacother ; 150: 112973, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35468581

RESUMO

Dioscin (Dio), steroid saponin, exists in several medicinal herbs with potent anticancer efficacy. This study aimed to explore the effect of Dio on the immune-related modulation and synergistic therapeutic effects of the herpes simplex virus thymidine kinase/ganciclovir (HSV-Tk/GCV) suicide gene therapy system in murine melanoma, thereby providing a research basis to improve the potential immunomodulatory mechanism underlying combination therapy. Using both in vitro and in vivo experiments, we confirmed the immunocidal effect of Dio-potentiated suicide gene therapy on melanoma. The results showed that Dio upregulated connexin 43 (Cx43) expression and improved gap junction intercellular communication (GJIC) in B16 cells while increasing the cross-presentation of antigens by dendritic cells (DCs), eventually promoting the activation and antitumor immune killing effects of CD8+ T lymphocytes. In contrast, inhibition or blockade of the GJIC function (overexpression of mutant Cx43 tumor cells/Gap26) partially reversed the potentiating effect. The significant synergistic effect of Dio on HSV-Tk/GCV suicide gene therapy was further investigated in a B16 xenograft mouse model. The increased number and activation ratio of CD8+ T lymphocytes and the levels of Gzms-B, IFN-γ, and TNF-α in mice reconfirmed the potential modulatory effects of Dio on the immune system. Taken together, Dio targets Cx43 to enhance GJIC function, improve the antigens cross-presentation of DCs, and activate the antitumor immune effect of CD8+ T lymphocytes, thereby providing insights into the potential immunomodulatory mechanism underlying combination therapy.


Assuntos
Conexina 43 , Melanoma , Animais , Comunicação Celular , Conexina 43/genética , Conexina 43/metabolismo , Apresentação Cruzada , Diosgenina/análogos & derivados , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Junções Comunicantes/metabolismo , Terapia Genética/métodos , Humanos , Melanoma/tratamento farmacológico , Melanoma/terapia , Camundongos , Simplexvirus/genética , Simplexvirus/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Timidina Quinase/farmacologia
6.
Drug Des Devel Ther ; 14: 2135-2147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32546976

RESUMO

PURPOSE: Dioscin, a natural glycoside derived from many plants, has been proved to exert anti-cancer activity. Several studies have found that it reverses TGF-ß1-induced epithelial-mesenchymal transition (EMT). Whether dioscin can reverse EMT by pathways other than TGF-ß is still unknown. METHODS: We used network-based pharmacological methods to systematically explore the potential mechanisms by which dioscin acts on lung cancer. Cell Counting Kit-8 assay, scratch healing, Transwell assay, Matrigel invasion assay, immunofluorescence assay, and Western blotting were employed to confirm the prediction of key targets and the effects of dioscin on EMT. RESULTS: Here, using network-based pharmacological methods, we found 42 possible lung cancer-related targets of dioscin, which were assigned to 98 KEGG pathways. Among the 20 with the lowest p-values, the PI3K-AKT signaling pathway is involved and significantly related to EMT. AKT1 and mTOR, with high degrees (reflecting higher connectivity) in the compound-target analysis, participate in the PI3K-AKT signaling pathway. Molecular docking indicated the occurrence of dioscin-AKT1 and dioscin-mTOR binding. Functional experiments demonstrated that dioscin suppressed the proliferation, migration, invasion, and EMT of human lung adenocarcinoma cells in a dose-dependent manner, without TGF-ß stimulation. Furthermore, we determined that dioscin downregulated p-AKT, p-mTOR and p-GSK3ß in human lung adenocarcinoma cells without affecting their total protein levels. The PI3K inhibitor LY294002 augmented these changes. CONCLUSION: Dioscin suppressed proliferation, invasion and EMT of lung adenocarcinoma cells via the inactivation of AKT/mTOR/GSK3ß signaling, probably by binding to AKT and mTOR, and inhibiting their phosphorylation.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Diosgenina/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diosgenina/química , Diosgenina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA