Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 26: e52401, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146013

RESUMO

BACKGROUND: We queried ChatGPT (OpenAI) and Google Assistant about amblyopia and compared their answers with the keywords found on the American Association for Pediatric Ophthalmology and Strabismus (AAPOS) website, specifically the section on amblyopia. Out of the 26 keywords chosen from the website, ChatGPT included 11 (42%) in its responses, while Google included 8 (31%). OBJECTIVE: Our study investigated the adherence of ChatGPT-3.5 and Google Assistant to the guidelines of the AAPOS for patient education on amblyopia. METHODS: ChatGPT-3.5 was used. The four questions taken from the AAPOS website, specifically its glossary section for amblyopia, are as follows: (1) What is amblyopia? (2) What causes amblyopia? (3) How is amblyopia treated? (4) What happens if amblyopia is untreated? Approved and selected by ophthalmologists (GW and DL), the keywords from AAPOS were words or phrases that deemed significant for the education of patients with amblyopia. The "Flesch-Kincaid Grade Level" formula, approved by the US Department of Education, was used to evaluate the reading comprehension level for the responses from ChatGPT, Google Assistant, and AAPOS. RESULTS: In their responses, ChatGPT did not mention the term "ophthalmologist," whereas Google Assistant and AAPOS both mentioned the term once and twice, respectively. ChatGPT did, however, use the term "eye doctors" once. According to the Flesch-Kincaid test, the average reading level of AAPOS was 11.4 (SD 2.1; the lowest level) while that of Google was 13.1 (SD 4.8; the highest required reading level), also showing the greatest variation in grade level in its responses. ChatGPT's answers, on average, scored 12.4 (SD 1.1) grade level. They were all similar in terms of difficulty level in reading. For the keywords, out of the 4 responses, ChatGPT used 42% (11/26) of the keywords, whereas Google Assistant used 31% (8/26). CONCLUSIONS: ChatGPT trains on texts and phrases and generates new sentences, while Google Assistant automatically copies website links. As ophthalmologists, we should consider including "see an ophthalmologist" on our websites and journals. While ChatGPT is here to stay, we, as physicians, need to monitor its answers.


Assuntos
Ambliopia , Internet , Educação de Pacientes como Assunto , Ambliopia/terapia , Humanos , Educação de Pacientes como Assunto/métodos , Oftalmologia/educação
2.
Nature ; 622(7983): 514-520, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731002

RESUMO

The highly energy-intensive iron and steel industry contributed about 25% (ref. 1) of global industrial CO2 emissions in 2019 and is therefore critical for climate-change mitigation. Despite discussions of decarbonization potentials at national and global levels2-6, plant-specific mitigation potentials and technologically driven pathways remain unclear, which cumulatively determines the progress of net-zero transition of the global iron and steel sector. Here we develop a CO2 emissions inventory of 4,883 individual iron and steel plants along with their technical characteristics, including processing routes and operating details (status, age, operation-years etc.). We identify and match appropriate emission-removal or zero-emission technologies to specific possessing routes, or what we define thereafter as a techno-specific decarbonization road map for every plant. We find that 57% of global plants have 8-24 operational years, which is the retrofitting window for low-carbon technologies. Low-carbon retrofitting following the operational characteristics of plants is key for limiting warming to 2 °C, whereas advanced retrofitting may help limit warming to 1.5 °C. If each plant were retrofitted 5 years earlier than the planned retrofitting schedule, this could lead to cumulative global emissions reductions of 69.6 (±52%) gigatonnes (Gt) CO2 from 2020 to 2050, almost double that of global CO2 emissions in 2021. Our results provide a detailed picture of CO2 emission patterns associated with production processing of iron and steel plants, illustrating the decarbonization pathway to the net-zero-emissions target with the efforts from each plant.

3.
Environ Sci Technol ; 57(19): 7547-7558, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37134233

RESUMO

Nickel (Ni) is a trace element beneficial for plant growth and development and could improve crop yield by stimulating urea decomposition and nitrogen-fixing enzyme activity. A full life cycle study was conducted to compare the long-term effects of soil-applied NiO nanoparticles (n-NiO), NiO bulk (b-NiO), and NiSO4 at 10-200 mg kg-1 on plant growth and nutritional content of soybean. n-NiO at 50 mg kg-1 significantly promoted the seed yield by 39%. Only 50 mg kg-1 n-NiO promoted total fatty acid content and starch content by 28 and 19%, respectively. The increased yield and nutrition could be attributed to the regulatory effects of n-NiO, including photosynthesis, mineral homeostasis, phytohormone, and nitrogen metabolism. Furthermore, n-NiO maintained a Ni2+ supply for more extended periods than NiSO4, reducing potential phytotoxicity concerns. Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the first time confirmed that the majority of the Ni in seeds is in ionic form, with only 28-34% as n-NiO. These findings deepen our understanding of the potential of nanoscale and non-nanoscale Ni to accumulate and translocate in soybean, as well as the long-term fate of these materials in agricultural soils as a strategy for nanoenabled agriculture.


Assuntos
Nanopartículas , Níquel , Níquel/química , Glycine max , Nitrogênio , Solo
4.
Environ Pollut ; 320: 121063, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639045

RESUMO

Rice is known to accumulate cadmium (Cd) in its grains, causing a severe threat to billions of people worldwide. The possible phytotoxicity and mechanism of 50-200 mg/L hydroxyapatite NPs (nHA), iron oxide NPs (nFe2O3) or nano zero valent iron (nZVI) co-exposed with Cd (100 µM) in rice seedlings were investigated. Three types of nanoparticles significantly reduced the bioaccumulation of Cd in rice shoots by 16-63%, with nZVI showing the greatest effect, followed by nHA and nFe2O3. A decrease in Cd content in the roots was observed only in the nZVI treatment, with values ranging from 8 to 19%. Correspondingly, nZVI showed the best results in promoting plant growth, increasing rice plant height, shoot and root biomass by 13%, 29% and 42%. In vitro studies showed that nZVI reduced the content of Cd in the solution by 20-52% through adsorption, which might have contributed to the immobilization of Cd in root. Importantly, the nZVI treatment resulted in 267% more iron plaques on the root surface, which acted as a barrier to hinder the entry of Cd. Moreover, all three nanoparticles significantly reduced the oxidative stress induced by Cd by regulating phytohormones, phytochelatin, inorganic homeostasis and the expression of genes associated with Cd uptake and transport. Overall, this study elucidates for the first time the multiple complementing mechanisms for some nanoparticles to reduce Cd uptake and transport in rice and provides theoretical basis for applying nanoparticles for reducing Cd accumulation in edible plants.


Assuntos
Cádmio , Ferro , Nanopartículas , Oryza , Poluentes do Solo , Humanos , Cádmio/análise , Cádmio/toxicidade , Ferro/análise , Nanopartículas/toxicidade , Oryza/metabolismo , Fitoquelatinas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plântula , Poluentes do Solo/análise
5.
Water Res ; 228(Pt A): 119355, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423551

RESUMO

Natural organic matter (NOM) readily interacts with nanoparticles, leading to the formation of NOM corona structures on their surface. NOM corona formation is closely related to the surface coatings and bioavailability of nanoparticles. However, the mechanism underlying NOM corona formation on silver nanoparticles (AgNPs) remains largely unknown due to the lack of effective analytical methods for identifying the changes in the AgNP surface. Herein, the separation ability of biased cyclical electrical field-flow fractionation (BCyElFFF) for same-sized polyvinyl pyrrolidone-coated and poly(ethylene glycol)-coated silver nanoparticles (AgNPs) with different electrophoretic mobilities was evaluated under various electrical conditions. Then, the mechanism behind the NOM corona formation on these AgNP surfaces was elucidated based on the changes in the elution time and off-line characterization of the collected fractions during their elution time in a BCyElFFF run. Finally, the survival rates of E. coli exposed to polyvinyl pyrrolidone-coated and poly(ethylene glycol)-coated AgNPs with or without NOM collected during repeated BCyElFFF runs were observed to increase with increasing NOM concentration, clearly demonstrating the negative effect of NOM corona structures on the bioavailability of AgNPs. These findings highlight the powerful separation and isolation ability of BCyElFFF in studying the transformation and fate of nanoparticles in aqueous environments.


Assuntos
Nanopartículas Metálicas , Prata , Escherichia coli , Polivinil , Polietilenoglicóis , Povidona
6.
Nanomaterials (Basel) ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202545

RESUMO

Nanotechnology emerges as an important way to safeguard global food security amid the escalating challenges posed by the expansion of the global population and the impacts of climate change. The perfect fusion of this breakthrough technology with traditional agriculture promises to revolutionize the way agriculture is traditionally practiced and provide effective solutions to the myriad of challenges in agriculture. Particularly noteworthy are the applications of nano-fertilizers and pesticides in agriculture, which have become milestones in sustainable agriculture and offer lasting alternatives to traditional methods. This review meticulously explores the key role of nano-fertilizers and pesticides in advancing sustainable agriculture. By focusing on the dynamic development of nanotechnology in the field of sustainable agriculture and its ability to address the overarching issue of global food security, this review aims to shed light on the transformative potential of nanotechnology to pave the way for a more resilient and sustainable future for agriculture.

7.
Cell Rep ; 41(6): 111615, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351397

RESUMO

Mixed hematopoietic chimerism can promote immune tolerance of donor-matched transplanted tissues, like pancreatic islets. However, adoption of this strategy is limited by the toxicity of standard treatments that enable donor hematopoietic cell engraftment. Here, we address these concerns with a non-myeloablative conditioning regimen that enables hematopoietic chimerism and allograft tolerance across fully mismatched major histocompatibility complex (MHC) barriers. Treatment with an αCD117 antibody, targeting c-Kit, administered with T cell-depleting antibodies and low-dose radiation permits durable multi-lineage chimerism in immunocompetent mice following hematopoietic cell transplant. In diabetic mice, co-transplantation of donor-matched islets and hematopoietic cells durably corrects diabetes without chronic immunosuppression and no appreciable evidence of graft-versus-host disease (GVHD). Donor-derived thymic antigen-presenting cells and host-derived peripheral regulatory T cells are likely mediators of allotolerance. These findings provide the foundation for safer bone marrow conditioning and cell transplantation regimens to establish hematopoietic chimerism and islet allograft tolerance.


Assuntos
Diabetes Mellitus Experimental , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Transplante Homólogo , Medula Óssea , Diabetes Mellitus Experimental/terapia , Condicionamento Pré-Transplante , Transplante de Medula Óssea , Tolerância Imunológica
8.
NanoImpact ; 28: 100420, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038133

RESUMO

People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse. Compared with traditional formulations, nano-pesticides have superior antimicrobial performance and are environmentally friendly. Zn-based nanoparticles (NPs) have shown their potential as strong antipathogen activity. However, their full potential has not been demonstrated yet. Here, we analyzed the prerequisites for the use of Zn-based NPs as nano-pesticides in agriculture including both intrinsic properties of the materials and environmental conditions. We also summarized the mechanisms of Zn-based NPs against phytopathogens including direct and indirect strategies to alleviate plant disease stress. Finally, the current challenges and future directions are highlighted to advance our understanding of this field and guide future studies.


Assuntos
Praguicidas , Humanos , Zinco/uso terapêutico
9.
Sci Rep ; 12(1): 9033, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641781

RESUMO

Improved models of experimental diabetes are needed to develop cell therapies for diabetes. Here, we introduce the B6 RIP-DTR mouse, a model of experimental diabetes in fully immunocompetent animals. These inbred mice harbor the H2b major histocompatibility complex (MHC), selectively express high affinity human diphtheria toxin receptor (DTR) in islet ß-cells, and are homozygous for the Ptprca (CD45.1) allele rather than wild-type Ptprcb (CD45.2). 100% of B6 RIP-DTR mice rapidly became diabetic after a single dose of diphtheria toxin, and this was reversed indefinitely after transplantation with islets from congenic C57BL/6 mice. By contrast, MHC-mismatched islets were rapidly rejected, and this allotransplant response was readily monitored via blood glucose and graft histology. In peripheral blood of B6 RIP-DTR with mixed hematopoietic chimerism, CD45.2 BALB/c donor blood immune cells were readily distinguished from host CD45.1 cells by flow cytometry. Reliable diabetes induction and other properties in B6 RIP-DTR mice provide an important new tool to advance transplant-based studies of islet replacement and immunomodulation to treat diabetes.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Imunologia de Transplantes
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(9): 1280-1287, 2020 Sep 30.
Artigo em Chinês | MEDLINE | ID: mdl-32990240

RESUMO

OBJECTIVE: To screen potential traditional Chinese medicine and their active monomer ingredients for treatment of diabetic nephropathy (DN) through the mechanism of caspase-1-mediated pyroptosis. METHODS: Using the Chinese Medicine System Pharmacology Analysis Platform (TCMSP), we screened traditional Chinese drugs and their active monomer components targeting caspase-1, and searched for the potential gene targets of the monomer components using GeneCards database. Cytoscape was used to construct the monomer compound-gene target network. Gene ontology (GO) functional enrichment analysis and Kyoto Gene and Gene Encyclopedia (KEGG) pathway enrichment analysis were used to predict the molecular mechanism of the screened traditional Chinese medicine and monomers. In SD rat models of diabetic mellitus (DM), we tested the therapeutic effect of ginsenoside Rh2 (daily dose of 20 mg/kg for 12 weeks) by examining renal pathology with HE staining and detecting the expressions of pyroptosis marker proteins caspase-1, GSDMD, IL-1ß and IL-18 in the renal tissues using Western blotting, the serum levels of IL-1ß and IL-18 and activities of cathepsin B and cathepsin L. RESULTS: Ginsenoside Rh2 could effectively dock with caspase-1 molecule. Fourteen targets were identified in ginsenoside Rh2 target network. GO function enrichment analysis revealed 27 GO terms associated with molecular function (4 terms), cell component (10 terms) and biological process (13 terms). KEGG pathyway enrichment analysis identified 4 signaling pathways involving lysosomes, glycosaminoglycan degradation, galactose metabolism, and sphingolipid metabolism pathways. In the animal experiment, treatment with ginsenoside Rh2 significantly alleviated renal pathologies and down-regulated the expressions of pyroptosis marker proteins (cleaved caspase-1, GSDMD-N, IL-1ß and IL-18) (P < 0.05 or 0.01), lowered serum levels of IL-1ß and IL-18 (P < 0.01), and enhanced the activities of cathepsin B and cathepsin L in the serum of the diabetic rats. CONCLUSIONS: Ginsenoside Rh2 may inhibit caspase-1-mediated pyroptosis through the lysosome pathway to improve kidney damages in rat models of DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Materia Medica , Animais , Caspase 1 , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Proteínas de Neoplasias , Piroptose , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA