Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324836

RESUMO

In this study, vacuum ultraviolet (VUV) was first proposed to activate ferrate (Fe(VI)) for degrading micropollutants (e.g., carbamazepine (CBZ)). Results indicated that VUV/Fe(VI) could significantly facilitate the CBZ degradation, and the removal efficiencies of VUV/Fe(VI) were 30.9-83.4% higher than those of Fe(VI) at pH = 7.0-9.0. Correspondingly, the degradation rate constants of VUV/Fe(VI) were 2.3-36.0-fold faster than those of Fe(VI). Free radical quenching and probe experiments revealed that the dominant active species of VUV/Fe(VI) were •OH and Fe(V)/Fe(IV), whose contribution ratios were 43.3 to 48.6% and 48.2 to 46.6%, respectively, at pH = 7.0-9.0. VUV combined with Fe(VI) not only effectively mitigated the weak oxidizing ability of Fe(VI) under alkaline conditions (especially pH = 9.0) but also attenuated the deteriorating effect of background constituents on Fe(VI). In different real waters (tap water, river water, WWTPs effluent), VUV/Fe(VI) retained a remarkably enhanced effect on CBZ degradation compared to Fe(VI). Moreover, VUV/Fe(VI) exhibited outstanding performance in the debasement of CBZ and sulfamethoxazole (SMX), as well as six other micropollutants, displaying broad-spectrum capability in degrading micropollutants. Overall, this study developed a novel oxidation process that was efficient and energy-saving for the rapid removal of micropollutants.

2.
Mar Drugs ; 21(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38132967

RESUMO

The secondary metabolites of marine fungi with rich chemical diversity and biological activity are an important and exciting target for natural product research. This study aimed to investigate the fungal community in Quanzhou Bay, Fujian, and identified 28 strains of marine fungi. A total of 28 strains of marine fungi were screened for small-scale fermentation by the OSMAC (One Strain-Many Compounds) strategy, and 77 EtOAc crude extracts were obtained and assayed for cancer cell inhibition rate. A total of six strains of marine fungi (P-WZ-2, P-WZ-3-2, P-WZ-4, P-WZ-5, P56, and P341) with significant changes in cancer cell inhibition induced by the OSMAC strategy were analysed by UPLC-QTOF-MS. The ACD/MS Structure ID Suite software was used to predict the possible structures with inhibitory effects on cancer cells. A total of 23 compounds were identified, of which 10 compounds have been reported to have potential anticancer activity or cytotoxicity. In this study, the OSMAC strategy was combined with an untargeted metabolomics approach based on UPLC-QTOF-MS to efficiently analyse the effect of changes in culture conditions on anticancer potentials and to rapidly find active substances that inhibit cancer cell growth.


Assuntos
Fungos , Metabolômica , Cromatografia Líquida de Alta Pressão , Fungos/metabolismo , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA