Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(4): 738-750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38097716

RESUMO

Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg-1·d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 µM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.


Assuntos
Anticonvulsivantes , Bloqueadores dos Canais de Cálcio , Cardiomegalia , Quinase 3 da Glicogênio Sintase , Complexo de Endopeptidases do Proteassoma , Zonisamida , Animais , Camundongos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Zonisamida/farmacologia , Zonisamida/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico
2.
J Nanobiotechnology ; 18(1): 110, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762751

RESUMO

BACKGROUNDS: Due to the unexpected side effects of the iodinated contrast agents, novel contrast agents for X-ray computed tomography (CT) imaging are urgently needed. Nanoparticles made by heavy metal elements are often employed, such as gold and bismuth. These nanoparticles have the advantages of long in vivo circulation time and tumor targeted ability. However, due to the long residence time in vivo, these nanoparticles may bring unexpected toxicity and, the preparation methods of these nanoparticles are complicated and time-consuming. METHODS: In this investigation, a small molecular bismuth chelate using diethylenetriaminepentaacetic acid (DPTA) as the chelating agent was proposed to be an ideal CT contrast agent. RESULTS: The preparation method is easy and cost-effective. Moreover, the bismuth agent show better CT imaging for kidney than iohexol in the aspect of improved CT values. Up to 500 µM, the bismuth agent show negligible toxicity to L02 cells and negligible hemolysis. And, the bismuth agent did not induce detectable morphology changes to the main organs of the mice after intravenously repeated administration at a high dose of 250 mg/kg. The pharmacokinetics of the bismuth agent follows the first-order elimination kinetics and, it has a short half-life time of 0.602 h. The rapid clearance from the body promised its excellent biocompatibility. CONCLUSIONS: This bismuth agent may serve as a potential candidate for developing novel contrast agent for CT imaging in clinical applications.


Assuntos
Bismuto , Meios de Contraste , Tomografia Computadorizada por Raios X/métodos , Animais , Bismuto/química , Bismuto/farmacocinética , Bismuto/toxicidade , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/toxicidade , Iohexol/química , Iohexol/farmacocinética , Rim/diagnóstico por imagem , Rim/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Ácido Pentético/química , Ácido Pentético/farmacocinética , Distribuição Tecidual , Imagem Corporal Total
3.
Nano Lett ; 20(3): 2062-2071, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32096643

RESUMO

Tumor hypoxia is the Achilles heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the tumor hypoxia. In this work, an oxidative phosphorylation inhibitor of atovaquone (ATO) and a photosensitizer of chlorine e6 (Ce6)-based self-delivery nanomedicine (designated as ACSN) were prepared via π-π stacking and hydrophobic interaction for O2-economized PDT against hypoxic tumors. Specifically, carrier-free ACSN exhibited an extremely high drug loading rate and avoided the excipient-induced systemic toxicity. Moreover, ACSN not only dramatically improved the solubility and stability of ATO and Ce6 but also enhanced the cellular internalization and intratumoral permeability. Abundant investigations confirmed that ACSN effectively suppressed the oxygen consumption to reverse the tumor hypoxia by inhibiting mitochondrial respiration. Benefiting from the synergistic mechanism, an enhanced PDT effect of ACSN was observed on the inhibition of tumor growth. This self-delivery system for oxygen-economized PDT might be a potential appealing clinical strategy for tumor eradication.


Assuntos
Neoplasias Mamárias Experimentais , Nanomedicina , Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacologia
4.
Int J Mol Med ; 44(3): 1091-1105, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31524224

RESUMO

Damaged endothelial progenitor cells (EPCs) are associated with poor prognosis in diabetic myocardial infarction (DMI). Our previous studies revealed that an impaired Sonic hedgehog (Shh) pathway contributes to insufficient function in diabetic EPCs; however, the roles of the Shh pathway in diabetic EPC apoptosis under basal and hypoxic/ischemic conditions remain unknown. Therefore, the present study investigated whether Shh revitalized diabetic EPCs and consequently improved the deteriorative status of DMI. For this purpose, streptozotocin injection was used in male C57/BL6 mice to induce type­1 diabetes, and diabetic EPCs were isolated from the bone marrow. Apoptosis, cell function, and protein expression were investigated in EPCs in vitro. Mouse hearts were injected with adenovirus Shh­modified diabetic EPCs (DM­EPCShh) or control DM­EPCNull immediately after coronary artery ligation in vivo. Cardiac function, capillary numbers, fibrosis, and cell apoptosis were then detected. First, the in vitro results demonstrated that the apoptosis of diabetic EPCs was reduced following treatment with Shh protein for 24 h, under normal or hypoxic conditions. BMI1 proto­oncogene (Bmi1), an antiapoptotic protein found in several cells, was reduced in diabetic EPCs under normal or hypoxic conditions, but was upregulated after Shh protein stimulation. When Bmi1­siRNA was administered, the antiapoptotic effect of Shh protein was significantly reversed. In addition, p53, a Bmi1­targeted gene, was demonstrated to mediate the antiapoptotic effect of the Shh/Bmi1 pathway in diabetic EPCs. The Shh/Bmi1/p53 axis also enhanced the diabetic EPC function. In vivo, Shh­modified diabetic EPCs exhibited increased EPC retention and decreased apoptosis at 3 days post­DMI. At 14 days post­DMI, these cells presented enhanced capillary density, reduced myocardial fibrosis and improved cardiac function. In conclusion, the present results demonstrated that the Shh pathway restored diabetic EPCs through the Shh/Bmi1/p53 axis, suppressed myocardial apoptosis and improved myocardial angiogenesis, thus reducing cardiac fibrosis and finally restoring myocardial repair and cardiac function in DMI. Thus, the Shh pathway may serve as a potential target for autologous cell therapy in diabetic myocardial ischemia.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Animais , Apoptose/genética , Biomarcadores , Biópsia , Células da Medula Óssea/metabolismo , Diabetes Mellitus Experimental , Ecocardiografia , Inativação Gênica , Hipóxia , Imuno-Histoquímica , Masculino , Camundongos , Modelos Biológicos , Infarto do Miocárdio/diagnóstico , RNA Interferente Pequeno/genética , Transdução de Sinais
5.
Macromol Biosci ; 19(4): e1800410, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30576082

RESUMO

In this paper, a self-delivery chimeric peptide PpIX-PEG8 -KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self-assembly into nanoparticles (designated as PPMA), this self-delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti-tumor immune response. On the other hand, the melanoma specific antigen (KVPRNQDWL) peptide could also activate the specific cytotoxic T cells for anti-tumor immunity. Compared to immunotherapy alone, the combined photodynamic immunotherapy exhibits significantly enhanced inhibition of melanoma growth. Both in vitro and in vivo investigations confirm that PDT of PPMA has a positive effect on anti-tumor immune response. This self-delivery system demonstrates a great potential of this PDT amplified immunotherapy strategy for advanced or metastatic tumor treatment.


Assuntos
Antígenos de Neoplasias/farmacologia , Sistemas de Liberação de Medicamentos , Imunoterapia , Melanoma Experimental/terapia , Peptídeos/farmacologia , Fotoquimioterapia , Animais , Antígenos de Neoplasias/imunologia , Células COS , Chlorocebus aethiops , Imunidade Celular/efeitos dos fármacos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia
6.
Chem Pharm Bull (Tokyo) ; 60(6): 785-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22689432

RESUMO

Phytochemical investigations of the root bark of Juglans cathayensis DODE. led to the isolation of three new naphthalenyl glycosides, Jugnaphthalenoside A-C (1-3). Their structures were elucidated on the basis of extensive analysis of spectroscopic data. The cytotoxicities of the three new compounds were also evaluated.


Assuntos
Antineoplásicos/química , Glicosídeos/química , Juglans/química , Casca de Planta/química , Raízes de Plantas/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA