Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 836931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350167

RESUMO

Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.

2.
Stem Cell Res Ther ; 12(1): 606, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930455

RESUMO

BACKGROUND: Pruritus is a recurring, long-lasting skin disease with few effective treatments. Many patients have unsatisfactory responses to currently available antipruritic treatments, and effective therapeutics are urgently needed to relieve symptoms. A previous study reported that mesenchymal stem cell (MSC)-mediated immune regulation could be used to treat skin inflammatory diseases. Multilineage-differentiating stress-enduring (Muse) cells are a new type of pluripotent stem cell that may also have the potential to treat inflammatory skin diseases. METHODS: Muse cells were isolated from human bone marrow-derived MSCs (BMSCs) via the 8-h longterm trypsin incubation (LTT) method. Repeated use of 2,4-dinitrofluorobenzene (DNFB) induced atopic dermatitis (AD) in a mouse model. Immunofluorescence, behavior recording, and image analysis were used to evaluate the therapeutic effect of subcutaneous Muse cell injection. Real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of inflammatory factors. In vitro, wound healing and cell proliferation experiments were used to examine the effect of Muse cell supernatant on keratinocytes. RESULTS: Our results showed that subcutaneous injection of Muse cells after AD model induction significantly alleviated scratching behavior in mice. The evaluation of dermatitis and photos of damaged skin on the back of the neck revealed that Muse cells reduced dermatitis, playing an active role in healing the damaged skin. The activation of spinal glial cells and scratching behavior were also reduced by Muse cell injection. In addition, we also showed that the expression levels of the inflammatory factors interleukin (IL)-6, IL-17α, and IL-33 in both the spinal cord and skin were suppressed by Muse cells. Furthermore, Muse cells not only exerted anti-inflammatory effects on lipopolysaccharide (LPS)-induced human HaCat cells but also promoted wound healing and keratinocyte proliferation. CONCLUSIONS: In vivo, Muse cells could alleviate scratching symptoms, reduce epidermal inflammation, and promote wound healing. In vitro, Muse cells could also promote the migration and proliferation of keratinocytes. In summary, Muse cells may become a new therapeutic agent for the treatment of AD.


Assuntos
Dermatite Atópica , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/terapia , Humanos , Queratinócitos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo , Pele
3.
Biochem Biophys Res Commun ; 568: 103-109, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34214874

RESUMO

At present, stem cell transplantation has a significant therapeutic effect on spinal cord injury (SCI), however, it is still challenging for the seed cells selection. In this study, in order to explore cells with wide neural repair potentials, we selected the pluripotent stem cells multilineage-differentiating stress-enduring (Muse) cells, inducing the in vitro differentiation of human Muse cells into neural precursor cells (Muse-NPCs) by applying neural induction medium. Here, we found induced Muse-NPCs expressed neural stem cell markers Nestin and NCAM, capable of differentiating into three types of neural cells (neuron, astrocyte and oligodendrocyte), and have certain biological functions. When Muse-NPCs were transplanted into rats suffering from T10 SCI, motor function was improved. These results provide an insight for application of Muse-NPCs in cell therapy or tissue engineering for the repair of SCI in future.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Neurogênese , Traumatismos da Medula Espinal/terapia , Adulto , Animais , Astrócitos/citologia , Células Cultivadas , Feminino , Humanos , Neurônios/citologia , Oligodendroglia/citologia , Ratos , Ratos Sprague-Dawley
4.
Glia ; 67(1): 78-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306657

RESUMO

Of the seven P2X receptor subtypes, P2X4 receptor (P2X4R) is widely distributed in the central nervous system, including in neurons, astrocytes, and microglia. Accumulating evidence supports roles for P2X4R in the central nervous system, including regulating cell excitability, synaptic transmission, and neuropathic pain. However, little information is available about the distribution and function of P2X4R in the peripheral nervous system. In this study, we find that P2X4R is mainly localized in the lysosomes of Schwann cells in the peripheral nervous system. In cultured Schwann cells, TNF-a not only enhances the synthesis of P2X4R protein but also promotes P2X4R trafficking to the surface of Schwann cells. TNF-a-induced BDNF secretion in Schwann cells is P2X4R dependent. in vivo experiments reveal that expression of P2X4R in Schwann cells of injured nerves is strikingly upregulated following nerve crush injury. Moreover, overexpression of P2X4R in Schwann cells by genetic manipulation promotes motor and sensory functional recovery and accelerates nerve remyelination via BDNF release following nerve injury. Our results suggest that enhancement of P2X4R expression in Schwann cells after nerve injury may be an effective approach to facilitate the regrowth and remyelination of injured nerves.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores Purinérgicos P2X4/biossíntese , Recuperação de Função Fisiológica/fisiologia , Remielinização/fisiologia , Células de Schwann/metabolismo , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/agonistas , Células Cultivadas , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células de Schwann/patologia , Fator de Necrose Tumoral alfa/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA