Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Thorac Dis ; 16(5): 3338-3349, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883659

RESUMO

Background: The significant progress has been made in targeted therapy for lung adenocarcinoma (LUAD) in the past decade. Only few targeted therapeutics have yet been approved for the treatment of lung squamous cell carcinoma (LUSC). Several higher frequency of gene alterations are identified as potentially actionable in LUSC. Our work aimed to explore the complex interplay of multiple genetic alterations and pathways contributing to the pathogenesis of LUSC, with a very low frequency of a single driver molecular alterations to develop more effective therapeutic strategies in the future. Methods: We retrospectively analyzed the targeted next-generation sequencing (NGS) data (approximately 600 genes) of 335 patients initially diagnosed with non-small cell lung cancer (NSCLC) at our institution between January 2019 and March 2023 and explored the somatic genome alteration difference between LUSC and LUAD. Results: We analyzed that the presence of loss-of-function (LoF) mutations (nonsense, frameshift, and splice-site variants) in histone-lysine N-methyltransferase 2D (KMT2D) was much more prevalent in LUSC (11/53, 20.8%) than in LUAD (6/282, 2.1%). Moreover, our data indicated TP53 co-mutated with KMT2D LoF in 90.9% (10/11) LUSC and 33.3% (2/6) LUAD. Notably, the mutation allele fraction (MAF) of KMT2D was very similar to that of TP53 in the co-mutated cases. Genomic profiling of driver gene mutations of NSCLC showed that 81.8% (9/11) of the patients with LUSC with KMT2D LoF mutations had PIK3CA amplification and/or FGFR1 amplification. Conclusions: Our results prompted that somatic LoF mutations of KMT2D occur frequently in LUSC, but are less frequent in LUAD and therefore may potentially contribute to the pathogenesis of LUSC. Concurrent TP53 mutations, FGFR1 amplification, and PIK3CA amplification are very common in LUSC cases with KMT2D LoF mutations. It needs more deeper investigation on the interplay of the genes and pathways and uses larger cohorts in the future.

2.
Ecotoxicol Environ Saf ; 279: 116480, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772146

RESUMO

Microcystins (MCs) are toxic to the central nervous system of mammals. However, the direct toxicity of MCs on mammalian brain cells and the involved molecular mechanisms are not fully elucidated. Here, we incubated primary astrocytes, the major glial cell-type in the brain, with 0-12.5 µM concentrations of MC-LR for 48 h, and the impairment was evaluated. We found that MC-LR caused significant increases in the cell viability at the range of 0.05-1 µM concentrations with the highest density at 0.1 µM concentration. Treatment with 0.1 µM MC-LR induced YAP nuclear translocation and decreased the ratio of p-YAP to YAP. It also decreased mRNA levels of the upstream regulator (AMOT), and enhanced expressions of YAP interacted genes (Egfr, Tead1, and Ctgf) in primary astrocytes. Overexpression of AMOT significantly attenuated the increase of MC-LR-induced astrocyte proliferation and the expression of YAP downstream genes. These results indicate that Hippo signaling contributed to MC-LR-caused astrocyte proliferation. Further, reactive astrogliosis was observed in the mice brain after MC-LR exposure to environmentally relevant concentrations (20 or 100 µg/L) through drinking water for 16 weeks. Pathological observations revealed that 100 µg/L MC-LR exposure caused neuronal damages with characteristics of shrunken or vacuolation in the region of the cerebral cortex, striatum and cerebellum. These results were accompanied with increased oxidative stress and inflammatory response. Our data reveal the potential astrocytic mechanisms in MC-induced neurotoxicity and raise an alarm for neurodegenerative disease risk following daily exposure to MC-LR.


Assuntos
Astrócitos , Proliferação de Células , Via de Sinalização Hippo , Toxinas Marinhas , Microcistinas , Transdução de Sinais , Microcistinas/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Receptores ErbB/metabolismo , Fatores de Transcrição de Domínio TEA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
3.
Int J Pharm ; 660: 124262, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815637

RESUMO

Monoclonal antibodies (mAbs) have become the predominant treatment modality for various diseases due to their high affinity and specificity. Although antibodies also have great potential for neurological diseases, they couldn't fully meet the therapeutic requirements due to their high molecular weight and limitations in crossing the blood-brain barrier (BBB). Herein, an innovative strategy based on exosomes (Exos) platform was developed to enhance the delivery of cetuximab (CTX) into the brain, and in combination with doxorubicin (DOX) for the synergistic targeted therapy of glioblastoma (GBM). The in vitro/vivo experiments have shown that exosomes could effectively promote BBB penetration and increase the content of CTX in glioma cells and brain lesions. Cytotoxicity and wound healing experiments have shown that CTX-Exo-DOX could significantly inhibit the proliferation of tumor cells. Finally, in vivo results showed that CTX-Exo-DOX significantly prolonged the survival time of tumor-bearing rats to 28 days, which was 1.47 times that of the DOX group. In summary, exosomes could deliver more antibodies into the brain, and CTX-Exo-DOX is a promising co-delivery system for the treatment of GBM. The results of this study will also provide a prospective strategy for antibody drugs in the treatment of neurological diseases.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Cetuximab , Doxorrubicina , Exossomos , Glioblastoma , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Exossomos/metabolismo , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Cetuximab/administração & dosagem , Cetuximab/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Humanos , Linhagem Celular Tumoral , Barreira Hematoencefálica/metabolismo , Ratos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Encéfalo/metabolismo , Ratos Sprague-Dawley , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ratos Nus
4.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792234

RESUMO

The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Neoplasias , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
5.
Clin Transl Oncol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776034

RESUMO

BACKGROUND: The aim of this study is to explore the prognostic value and immune signature of ITGB4 expression in lung adenocarcinoma (LUAD) brain metastasis. METHODS: We comprehensively screened genes associated with LUAD brain metastasis by integrating datasets from the GEO database and TMT-based quantitative proteomics profiles. Univariable survival and Multivariate Cox analysis was used to compare several clinical characteristics with survival, and a risk model was constructed. The biological functions were explored via GO and KEGG analysis. Gene set enrichment analysis (GSEA) was performed using the TCGA dataset. In addition, we use TIMER to explore the collection of ITGB4 Expression and Immune Infiltration Level in LUAD. The ability of ITGB4 to regulate tumor metastasis was further assessed by migration, invasion assay and Western-blot in H1975-BrM4 cells. RESULTS: We found that ITGB4 was the only gene with high clinical diagnostic and prognostic value in LUAD. Enrichment analysis indicated that ITGB4 is associated with brain metastasis, infiltration of immune cells, and the response to immunotherapy. ITGB4 expression can effectively predict the outcomes of patients with LUAD who are receiving anti-PD-1 therapy. ITGB4 knockdown inhibited the invasion, migration of H1975-BrM4 brain metastasis cells, as well as epithelial-mesenchymal transition (EMT) abilities. The heightened expression of ITGB4 protein was shown to promote EMT and enhance the metastatic potential. ITGB4 promotes the progression in H1975-BrM4 cells via MEK/ERK signaling pathway. CONCLUSIONS: Our findings indicate that the expression of ITGB4 is linked to the occurrence of brain metastasis and infiltration of immune cells, suggesting that ITGB4 might be a clinical treatment target for LUAD.

6.
Int J Cardiol Cardiovasc Risk Prev ; 21: 200265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577011

RESUMO

Background: The present study aimed to develop and validate a prediction nomogram model for 5-year all-cause mortality in diabetic patients with hypertension. Methods: Data were extracted from the National Health and Nutrition Examination Survey (NHANES). A total of 3291 diabetic patients with hypertension in the NHANES cycles for 1999-2014 were selected and randomly assigned at a ratio of 8:2 to the training cohort (n = 2633) and validation cohort (n = 658). Multivariable Cox regression was conducted to establish a visual nomogram model for predicting the risk of 5-year all-cause mortality. Receiver operating characteristic curves and C-indexes were used to evaluate the discriminant ability of the prediction nomogram model for all-cause mortality. Survival curves were created using the Kaplan-Meier method and compared by the log-rank test. Results: The nomogram model included eight independent predictors: age, sex, education status, marital status, smoking, serum albumin, blood urea nitrogen, and previous cardiovascular disease. The C-indexes for the model in the training and validation cohorts were 0.76 (95% confidence interval: 0.73-0.79, p < 0.001) and 0.75 (95% confidence interval: 0.69-0.81, p < 0.001), respectively. The calibration curves indicated that the model had satisfactory consistency in the two cohorts. The risk of all-cause mortality gradually increased as the tertiles of the nomogram model score increased (log-rank test, p < 0.001). Conclusion: The newly developed nomogram model, a readily useable and efficient tool to predict the risk of 5-year all-cause mortality in diabetic patients with hypertension, provides a novel risk stratification method for individualized intervention.

7.
BMC Genomics ; 25(1): 179, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355396

RESUMO

BACKGROUND: Gene expression pattern is associated with biological phenotype and is widely used in exploring gene functions. Its evolution is also crucial in understanding species speciation and divergence. The genus Gossypium is a bona fide model for studying plant evolution and polyploidization. However, the evolution of gene expression during cotton species divergence has yet to be extensively discussed. RESULTS: Based on the seedling leaf transcriptomes, this work analyzed the transcriptomic content and expression patterns across eight cotton species, including six diploids and two natural tetraploids. Our findings indicate that, while the biological function of these cotton transcriptomes remains largely conserved, there has been significant variation in transcriptomic content during species divergence. Furthermore, we conducted a comprehensive analysis of expression distances across cotton species. This analysis lends further support to the use of G. arboreum as a substitute for the A-genome donor of natural cotton polyploids. Moreover, our research highlights the evolution of stress-responsive pathways, including hormone signaling, fatty acid degradation, and flavonoid biosynthesis. These processes appear to have evolved under lower selection pressures, presumably reflecting their critical role in the adaptations of the studied cotton species to diverse environments. CONCLUSIONS: In summary, this study provided insights into the gene expression variation within the genus Gossypium and identified essential genes/pathways whose expression evolution was closely associated with the evolution of cotton species. Furthermore, the method of characterizing genes and pathways under unexpected high or slow selection pressure can also serve as a new strategy for gene function exploration.


Assuntos
Gossypium , Transcriptoma , Gossypium/genética , Gossypium/metabolismo , Genes de Plantas , Perfilação da Expressão Gênica , Poliploidia , Regulação da Expressão Gênica de Plantas , Filogenia , Genoma de Planta
8.
J Sci Food Agric ; 104(4): 2467-2476, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37986244

RESUMO

BACKGROUND: The application of curcumin (Cur) in the food industry is usually limited by its low water solubility and poor stability. This study aimed to fabricate self-assembled nanoparticles using pea vicilin (7S) through a pH-shifting method (pH 7-pH 12-pH 7) to develop water-soluble nanocarriers of Cur. RESULTS: Intrinsic fluorescence, far-UV circular dichroism spectra and transmission electron microscopy analysis demonstrated that the structure of 7S could be unfolded at pH 12.0 and refolded when the pH shifted to 7.0. The assembled 7S-Cur exhibited a high loading ability of 81.63 µg mg-1 for Cur and homogeneous particle distribution. Cur was encapsulated in the 7S hydrophobic nucleus in an amorphous form and combined through hydrophobic interactions and hydrogen bonding, resulting in the static fluorescence quenching of 7S. Compared with free Cur, the retention rates of Cur in 7S-Cur were approximately 1.12 and 1.70 times higher under UV exposure at 365 nm or heating at 75 °C for 120 min, respectively, as well as 7S-Cur showing approximately 1.50 times higher antioxidant activity. During simulated gastrointestinal experiments, 7S-Cur exhibited a better sustained-release property than free Cur. CONCLUSION: The self-assembled 7S nanocarriers prepared using a pH-shifting method effectively improved the antioxidant activity, environmental stability and sustained-release property of Cur. Therefore, 7S isolated from pea protein could be used as potential nanocarriers for Cur. © 2023 Society of Chemical Industry.


Assuntos
Curcumina , Nanopartículas , Proteínas de Armazenamento de Sementes , Curcumina/química , Antioxidantes , Pisum sativum , Preparações de Ação Retardada , Portadores de Fármacos/química , Nanopartículas/química , Água , Tamanho da Partícula
9.
Mol Cell Endocrinol ; 582: 112139, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128823

RESUMO

Impaired fatty acid oxidation (FAO) is a metabolic hallmark of renal tubular epithelial cells (RTECs) under diabetic conditions. Disturbed FAO may promote cellular oxidative stress and insufficient energy production, leading to ferroptosis subsequently. Canagliflozin, an effective anti-hyperglycemic drug, may exert potential reno-protective effects by upregulating FAO and inhibiting ferroptosis in RTECs. However, the mechanisms involved remain unclear. The present study is aimed to characterize the detailed mechanisms underlying the impact of canagliflozin on FAO and ferroptosis. Type 2 diabetic db/db mice were administrated daily by gavage with canagliflozin (20 mg/kg/day, 40 mg/kg/day) or positive control drug pioglitazone (10 mg/kg/day) for 12 weeks. The results showed canagliflozin effectively improved renal function and structure, reduced lipid droplet accumulation, enhanced FAO with increased ATP contents and CPT1A expression, a rate-limiting enzyme of FAO, and relieved ferroptosis in diabetic mice. Moreover, overexpression of FOXA1, a transcription factor related with lipid metabolism, was observed to upregulate the level of CPT1A, and further alleviated ferroptosis in high glucose cultured HK-2 cells. Whereas FOXA1 knockdown had the opposite effect. Mechanistically, chromatin immunoprecipitation assay and dual-luciferase reporter gene assay results demonstrated that FOXA1 transcriptionally promoted the expression of CPT1A through a sis-inducible element located in the promoter region of the protein. In conclusion, these data suggest that canagliflozin improves FAO and attenuates ferroptosis of RTECs via FOXA1-CPT1A axis in diabetic kidney disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ferroptose , Camundongos , Animais , Canagliflozina/farmacologia , Canagliflozina/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Epiteliais/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo
10.
Inflammation ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055118

RESUMO

Diabetic nephropathy (DN) is a common diabetic complication. Studies show that mitophagy inhibition induced-ferroptosis plays a crucial role in DN progression. UHRF1 is associated with mitophagy and is highly expression in DN patients, however, the effect of UHRF1 on DN is still unclear. Thus, in this study, we aimed to investigate whether UHRF1 involves DN development by the mitophagy/ferroptosis pathway. We overexpressed UHRF1 using an adeno-associated virus 9 (AAV9) system in high-fat diet/streptozotocin-induced diabetic mice. Renal function index, pathological changes, mitophagy factors, and ferroptosis factors were detected in vivo. High-glucose cultured human renal proximal tubular (HK-2) cells were used as in vitro models to investigate the mechanism of UHRF1 in DN. We found that diabetic mice exhibited kidney damage, which was alleviated by UHRF1 overexpression. UHRF1 overexpression promoted PINK1-mediated mitophagy and inhibited the expression of thioredoxin interacting protein (TXNIP), a factor associated with mitochondrial dysfunction. Additionally, UHRF1 overexpression alleviated lipid peroxidation and free iron accumulation, and upregulated the expression of GPX4 and Slc7a11, indicating the inhibition effect of UHRF1 overexpression on ferroptosis. We further investigated the mechanism of UHRF1 in the mitophagy/ferroptosis pathway in DN. We found that UHRF1 overexpression promoted PINK1-mediated mitophagy via inhibiting TXNIP expression, thus suppressing ferroptosis. These findings confirmed that upregulation of UHRF1 expression alleviates DN, indicating that UHRF1 has a reno-protective effect against DN.

11.
Cancer Res ; 83(24): 4161-4178, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098449

RESUMO

Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE: The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases , Inibidores de Checkpoint Imunológico/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina , Células Endoteliais/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Anilidas/farmacologia , Anilidas/uso terapêutico , RNA Nuclear Pequeno/uso terapêutico
12.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961519

RESUMO

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

13.
Cell Signal ; 112: 110906, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37748540

RESUMO

Esophageal cancer is one of the most malignant gastrointestinal malignancies. Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer in China. In recent years, with developments in basic medicine, it has been demonstrated that the abnormal expression of circular RNA (circRNA) plays an important role in the progression and prognosis of ESCC. This study explored the role and downstream molecular mechanisms of circ_0046534 in ESCC. We identified circ_0046534, which was found to be highly expressed in ESCC tissues and cells. Moreover, the downregulation of circ_0046534 inhibited the proliferation, migration and invasion of ESCC cells and the growth and metastasis of ESCC tumours in vivo. Dual-luciferase reporter assays showed that circ_0046534 sponged miR-339-5p and inhibited the expression of miR-339-5p. Furthermore, MMP2 was identified to be a direct target of miR-339-5p through bioinformatics analysis. In addition, the knockdown of circ_0046534 inhibited the expression of the downstream target gene matrix metalloproteinase 2 (MMP2) by releasing the adsorption of miR-339-5p. Taken together, this study demonstrated that silencing circ_0046534 inhibited the growth and metastasis of ESCC through the miR-339-5p/MMP2 pathway. Circ_0046534 is expected to serve as a new biomarker and target for ESCC and provide a new direction for its diagnosis and treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética
14.
BMC Cancer ; 23(1): 807, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644384

RESUMO

BACKGROUND: Breast cancer susceptibility gene (BRCA) mutation carriers are at an increased risk for breast, ovarian, prostate and pancreatic cancers. However, the role of BRCA is unclear in colorectal cancer; the results regarding the association between BRCA gene mutations and colorectal cancer risk are inconsistent and even controversial. This study aimed to investigate whether BRCA1 and BRCA2 gene mutations are associated with colorectal cancer risk. METHODS: In this systematic review, we searched PubMed/MEDLINE, Embase and Cochrane Library databases, adhering to PRISMA guidelines. Study quality was assessed using the Newcastle-Ottawa Scale (NOS). Unadjusted odds ratios (ORs) were used to estimate the probability of Breast Cancer Type 1 Susceptibility gene (BRCA1) and Breast Cancer Type 2 Susceptibility gene (BRCA2) mutations in colorectal cancer patients. The associations were evaluated using fixed effect models. RESULTS: Fourteen studies were included in the systematic review. Twelve studies, including seven case-control and five cohort studies, were included in the meta-analysis. A significant increase in the frequency of BRCA1 and BRCA2 mutations was observed in patients with colorectal cancer [OR = 1.34, 95% confidence interval (CI) = 1.02-1.76, P = 0.04]. In subgroup analysis, colorectal cancer patients had an increased odds of BRCA1 (OR = 1.48, 95% CI = 1.10-2.01, P = 0.01) and BRCA2 (OR = 1.56, 95% CI = 1.06-2.30, P = 0.02) mutations. CONCLUSIONS: BRCA genes are one of the genes that may increase the risk of developing colorectal cancer. Thus, BRCA genes could be potential candidates that may be included in the colorectal cancer genetic testing panel.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Masculino , Humanos , Genes Supressores de Tumor , Testes Genéticos , Mutação , Neoplasias Colorretais/genética
15.
Neuro Oncol ; 25(12): 2207-2220, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379245

RESUMO

BACKGROUND: Brain metastasis (BM) are a devastating consequence of lung cancer. This study was aimed to screen risk factors for predicting BM. METHODS: Using an in vivo BM preclinical model, we established a series of lung adenocarcinoma (LUAD) cell subpopulations with different metastatic ability. Quantitative proteomics analysis was used to screen and identify the differential protein expressing map among subpopulation cells. Q-PCR and Western-blot were used to validate the differential proteins in vitro. The candidate proteins were measured in LUAD tissue samples (n = 81) and validated in an independent TMA cohort (n = 64). A nomogram establishment was undertaken by performing multivariate logistic regression analysis. RESULTS: The quantitative proteomics analysis, qPCR and Western blot assay implied a five-gene signature that might be key proteins associated with BM. In multivariate analysis, the occurrence of BM was associated with age ≤ 65 years, high expressions of NES and ALDH6A1. The nomogram showed an area under the receiver operating characteristic curve (AUC) of 0.934 (95% CI, 0.881-0.988) in the training set. The validation set showed a good discrimination with an AUC of 0.719 (95% CI, 0.595-0.843). CONCLUSIONS: We have established a tool that is able to predict occurrence of BM in LUAD patients. Our model based on both clinical information and protein biomarkers will help to screen patient in high-risk population of BM, so as to facilitate preventive intervention in this part of the population.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Idoso , Neoplasias Pulmonares/genética , Neoplasias Encefálicas/genética , Análise Multivariada , Nomogramas
17.
Mater Horiz ; 10(7): 2417-2426, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074810

RESUMO

Effective tuning of carrier dynamics in two-dimensional (2D) materials is significant for multi-scene device applications. Using first-principles and ab initio nonadiabatic molecular dynamics calculations, the kinetics of O2, H2O, and N2 intercalation into 2D WSe2/WS2 van der Waals heterostructures and its effect on carrier dynamics have been comprehensively explored. It is found that the O2 molecule prefers to dissociate into atomic O atoms spontaneously after intercalation of WSe2/WS2 heterostructures, whereas H2O and N2 molecules remain intact. O2 intercalation significantly speeds up the electron separation process, while H2O intercalation largely speeds up the hole separation process. The lifetime of excited carriers can be prolonged by O2 or H2O or N2 intercalations. These intriguing phenomena can be attributed to the effect of interlayer coupling, and the underlying physical mechanism for tuning the carrier dynamics is fully discussed. Our results provide useful guidance for the experimental design of 2D heterostructures for optoelectronic applications in photocatalysts and solar energy cells.

18.
Reprod Biol Endocrinol ; 21(1): 23, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859276

RESUMO

BACKGROUND: Kallmann syndrome (KS) is a common type of idiopathic hypogonadotropic hypogonadism. To date, more than 30 genes including ANOS1 and FGFR1 have been identified in different genetic models of KS without affirmatory genotype-phenotype correlation, and novel mutations have been found. METHODS: A total of 35 unrelated patients with clinical features of disorder of sex development were recruited. Custom-panel sequencing or whole-exome sequencing was performed to detect the pathogenic mutations. Sanger sequencing was performed to verify single-nucleotide variants. Copy number variation-sequencing (CNV-seq) was performed to determine CNVs. The pathogenicity of the identified variant was predicted in silico. mRNA transcript analysis and minigene reporter assay were performed to test the effect of the mutation on splicing. RESULTS: ANOS1 gene c.709 T > A and c.711 G > T were evaluated as pathogenic by several commonly used software, and c.1063-2 A > T was verified by transcriptional splicing assay. The c.1063-2 A > T mutation activated a cryptic splice acceptor site downstream of the original splice acceptor site and resulted in an aberrant splicing of the 24-basepair at the 5' end of exon 8, yielding a new transcript with c.1063-1086 deletion. FRFR1 gene c.1835delA was assessed as pathogenic according to the ACMG guideline. The CNV of del(8)(p12p11.22)chr8:g.36140000_38460000del was judged as pathogenic according to the ACMG & ClinGen technical standards. CONCLUSIONS: Herein, we identified three novel ANOS1 mutations and two novel FGFR1 variations in Chinese KS families. In silico prediction and functional experiment evaluated the pathogenesis of ANOS1 mutations. FRFR1 c.1835delA mutation and del(8)(p12p11.22)chr8:g.36140000_38460000del were assessed as pathogenic variations. Therefore, our study expands the spectrum of mutations associated with KS and provides diagnostic evidence for patients who carry the same mutation in the future.


Assuntos
Proteínas da Matriz Extracelular , Síndrome de Kallmann , Proteínas do Tecido Nervoso , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Humanos , Variações do Número de Cópias de DNA , Éxons , Síndrome de Kallmann/genética , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Sítios de Splice de RNA , Proteínas da Matriz Extracelular/genética , Proteínas do Tecido Nervoso/genética
19.
FEBS Open Bio ; 13(6): 1107-1124, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877954

RESUMO

Mitofusin-2 (MFN2) is a transmembrane GTPase that regulates mitochondrial fusion and thereby modulates mitochondrial function. However, the role of MFN2 in lung adenocarcinoma remains controversial. Here, we investigated the effect of MFN2 regulation on mitochondria in lung adenocarcinoma. We found that MFN2 deficiency resulted in decreased UCP4 expression and mitochondrial dysfunction in A549 and H1975 cells. UCP4 overexpression restored ATP and intracellular calcium concentration, but not mtDNA copy number, mitochondrial membrane potential or reactive oxygen species level. Furthermore, mass spectrometry analysis identified 460 overlapping proteins after independent overexpression of MFN2 and UCP4; these proteins were significantly enriched in the cytoskeleton, energy production, and calponin homology (CH) domains. Moreover, the calcium signaling pathway was confirmed to be enriched in KEGG pathway analysis. We also found by protein-protein interaction network analysis that PINK1 may be a key regulator of MFN2- and UCP4-mediated calcium homeostasis. Furthermore, PINK1 increased MFN2/UCP4-mediated intracellular Ca2+ concentration in A549 and H1975 cells. Finally, we demonstrated that low expression levels of MFN2 and UCP4 in lung adenocarcinoma are associated with poor clinical prognosis. In conclusion, our data suggest not only a potential role of MFN2 and UCP4 in co-regulating calcium homeostasis in lung adenocarcinoma but also their potential use as therapeutic targets in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Cálcio , Humanos , Cálcio/metabolismo , Regulação para Baixo/genética , Adenocarcinoma de Pulmão/genética , Homeostase/genética , Proteínas Quinases/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
20.
Plant Physiol Biochem ; 197: 107648, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37001303

RESUMO

MYB transcription factors are one of the largest TF families involved in plant growth and development as well as biotic and abiotic stresses. In this study, we report the identification and functional characterization of a stress-responsive MYB gene (GhMYB3) from drought stress related transcriptome of upland cotton. GhMYB3, belonging to the R2R3-type, has high sequence similarity with AtMYB3 and was localized in the nucleus. Silence of GhMYB3 enhanced the drought tolerance of cotton seedlings and plants, reduced the water loss rate, and enhanced stomatal closure. In addition, GhMYB3i lines exhibited less ROS accumulation, as well as higher antioxidant enzyme activity and increased content of anthocyanins and proanthocyanidins than WT plants after drought stress. The expression level of flavonoid biosynthesis- and stress-related genes were up-regulated in GhMYB3i lines under drought stress condition. These results demonstrated that GhMYB3 acted as a negative regulator in upland cotton response to drought stress by regulating stomatal closure and ROS accumulation.


Assuntos
Secas , Genes myb , Antocianinas/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA