RESUMO
Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2). Both patients demonstrated progressive hypoxemia within 48 h of infusion with clinical and laboratory findings consistent with cytokine release syndrome. One patient ultimately progressed to grade 5 respiratory failure. An autopsy revealed acute lung injury, extensive T cell infiltration, and accumulation of CAR T cells in the lungs. RNA and protein detection techniques confirmed low levels of MSLN expression by benign pulmonary epithelial cells in affected lung and lung samples obtained from other inflammatory or fibrotic conditions, indicating that pulmonary pneumocyte and not pleural expression of mesothelin may lead to dose-limiting toxicity. We suggest patient enrollment criteria and dosing regimens of MSLN-directed therapies consider the possibility of dynamic expression of mesothelin in benign lung with a special concern for patients with underlying inflammatory or fibrotic conditions.
Assuntos
Mesotelina , Neoplasias , Humanos , Proteínas Ligadas por GPI/genética , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Linfócitos TRESUMO
Off-tumor targeting of human antigens is difficult to predict in preclinical animal studies and can lead to serious adverse effects in patients. To address this, we developed a mouse model with stable and tunable human Her2 (hHer2) expression on normal hepatic tissue and compared toxicity between affinity-tuned Her2 chimeric antigen receptor T cells (CARTs). In mice with hHer2-high livers, both the high-affinity (HA) and low-affinity (LA) CARTs caused lethal liver damage due to immunotoxicity. In mice with hHer2-low livers, LA-CARTs exhibited less liver damage and lower systemic levels of IFN-γ than HA-CARTs. We then compared affinity-tuned CARTs for their ability to control a hHer2-positive tumor xenograft in our model. Surprisingly, the LA-CARTs outperformed the HA-CARTs with superior antitumor efficacy in vivo. We hypothesized that this was due, in part, to T cell trafficking differences between LA and HA-CARTs and found that the LA-CARTs migrated out of the liver and infiltrated the tumor sooner than the HA-CARTs. These findings highlight the importance of T cell targeting in reducing toxicity of normal tissue and also in preventing off-tumor sequestration of CARTs, which reduces their therapeutic potency. Our model may be useful to evaluate various CARTs that have conditional expression of more than 1 single-chain variable fragment (scFv).
Assuntos
Interferon gama/genética , Fígado/efeitos dos fármacos , Receptor ErbB-2/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia Adotiva/métodos , Fígado/patologia , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
T-cell immunoglobulin and mucin domain containing 4 (Tim-4) is a phosphatidylserine receptor and is selectively expressed on antigen presenting cells. Recently, Tim-4 was reported to be expressed on iNKT cells, B1 cells, and tumor cells, suggesting it has multiple biological functions. In this review, we mainly summarize the expression and regulation of Tim-4 in immune cells including T cells, macrophages, dendritic cells, NKT cells, B cells, and mast cells. The expression of Tim-4 in these cells implies that Tim-4 might participate in immune related diseases. Emerging evidence emphasizes a substantial role for Tim-4 in maintaining homeostasis by regulating various immune responses, including viral infection, allergy, autoimmunity, and tumor immunity. Here, we collectively evaluated the role of Tim-4 in health and diseases. This summary will be extremely useful to fully understand the function of Tim-4 in the pathogenesis of immune related diseases, which would provide novel clues for the diagnosis and treatment of diseases.
Assuntos
Proteínas de Membrana/imunologia , Animais , HumanosRESUMO
CRISPR-Cas9 gene editing provides a powerful tool to enhance the natural ability of human T cells to fight cancer. We report a first-in-human phase 1 clinical trial to test the safety and feasibility of multiplex CRISPR-Cas9 editing to engineer T cells in three patients with refractory cancer. Two genes encoding the endogenous T cell receptor (TCR) chains, TCRα (TRAC) and TCRß (TRBC), were deleted in T cells to reduce TCR mispairing and to enhance the expression of a synthetic, cancer-specific TCR transgene (NY-ESO-1). Removal of a third gene encoding programmed cell death protein 1 (PD-1; PDCD1), was performed to improve antitumor immunity. Adoptive transfer of engineered T cells into patients resulted in durable engraftment with edits at all three genomic loci. Although chromosomal translocations were detected, the frequency decreased over time. Modified T cells persisted for up to 9 months, suggesting that immunogenicity is minimal under these conditions and demonstrating the feasibility of CRISPR gene editing for cancer immunotherapy.
Assuntos
Transferência Adotiva , Sistemas CRISPR-Cas , Edição de Genes , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Linfócitos T/transplante , Idoso , Proteína 9 Associada à CRISPR , Engenharia Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/genética , TransgenesRESUMO
Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.
Assuntos
5-Metilcitosina/metabolismo , Antígenos CD19/imunologia , Dioxigenases/genética , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Transferência Adotiva , Idoso , Alelos , Diferenciação Celular , Ensaios Clínicos como Assunto , Células Clonais/citologia , Células Clonais/imunologia , Dioxigenases/metabolismo , Epigênese Genética , Células HEK293 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , TransgenesRESUMO
Cancer has an impressive ability to evolve multiple processes to evade therapies. While immunotherapies and vaccines have shown great promise, particularly in certain solid tumors such as prostate cancer, they have been met with resistance from tumors that use a multitude of mechanisms of immunosuppression to limit effectiveness. Prostate cancer, in particular, secretes transforming growth factor ß (TGF-ß) as a means to inhibit immunity while allowing for cancer progression. Blocking TGF-ß signaling in T cells increases their ability to infiltrate, proliferate, and mediate antitumor responses in prostate cancer models. We tested whether the potency of chimeric antigen receptor (CAR) T cells directed to prostate-specific membrane antigen (PSMA) could be enhanced by the co-expression of a dominant-negative TGF-ßRII (dnTGF-ßRII). Upon expression of the dominant-negative TGF-ßRII in CAR T cells, we observed increased proliferation of these lymphocytes, enhanced cytokine secretion, resistance to exhaustion, long-term in vivo persistence, and the induction of tumor eradication in aggressive human prostate cancer mouse models. Based on our observations, we initiated a phase I clinical trial to assess these CAR T cells as a novel approach for patients with relapsed and refractory metastatic prostate cancer (ClinicalTrials.gov: NCT03089203).
Assuntos
Antígenos de Superfície/metabolismo , Proliferação de Células/fisiologia , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Linfócitos T/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária/fisiologia , Masculino , Pessoa de Meia-Idade , Células PC-3 , Próstata/metabolismo , Próstata/patologia , Linfócitos T/patologia , Fator de Crescimento Transformador beta/metabolismoRESUMO
The development of genomic editing technologies expands the landscape of T cell engineering for adoptive cell therapy. Among the multiple tools that can be used, CRISPR/Cas9 has been shown to be relatively easy to use, simple to design and cost effective with highly efficient multiplex genome engineering capabilities. Allogeneic universal chimeric antigen receptor (CAR) T cells can be produced by disrupting T cell receptor (TCR) and beta-2-microglobulin (B2M) in CAR T cells or by directly knocking in a CAR at the disrupted TRAC locus. The anti-tumor function can be further boosted by simultaneous ablation of PD-1 and CTLA-4. The anti-tumor activities and safety of TCR-transferred T cells can be improved by knocking out endogenous TCR, which avoids the use of affinity-enhanced TCRs that may lose specificity and cause severe adverse effects. Therefore, CRISPR/Cas9 technology holds enormous promise to advance the field of adoptive cell therapy.
Assuntos
Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/fisiologia , Animais , Edição de Genes/tendências , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/tendências , Neoplasias/genética , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/transplanteRESUMO
Chimeric antigen receptors (CAR) are synthetic molecules that provide new specificities to T cells. Although successful in treatment of hematologic malignancies, CAR T cells are ineffective for solid tumors to date. We found that the cell-surface molecule c-Met was expressed in â¼50% of breast tumors, prompting the construction of a CAR T cell specific for c-Met, which halted tumor growth in immune-incompetent mice with tumor xenografts. We then evaluated the safety and feasibility of treating metastatic breast cancer with intratumoral administration of mRNA-transfected c-Met-CAR T cells in a phase 0 clinical trial (NCT01837602). Introducing the CAR construct via mRNA ensured safety by limiting the nontumor cell effects (on-target/off-tumor) of targeting c-Met. Patients with metastatic breast cancer with accessible cutaneous or lymph node metastases received a single intratumoral injection of 3 × 107 or 3 × 108 cells. CAR T mRNA was detectable in peripheral blood and in the injected tumor tissues after intratumoral injection in 2 and 4 patients, respectively. mRNA c-Met-CAR T cell injections were well tolerated, as none of the patients had study drug-related adverse effects greater than grade 1. Tumors treated with intratumoral injected mRNA c-Met-CAR T cells were excised and analyzed by immunohistochemistry, revealing extensive tumor necrosis at the injection site, cellular debris, loss of c-Met immunoreactivity, all surrounded by macrophages at the leading edges and within necrotic zones. We conclude that intratumoral injections of mRNA c-Met-CAR T cells are well tolerated and evoke an inflammatory response within tumors. Cancer Immunol Res; 5(12); 1152-61. ©2017 AACR.
Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Imunoterapia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto , Idoso , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/imunologia , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR) T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE) CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors.
Assuntos
Interleucina-18/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Proliferação de Células , Humanos , CamundongosRESUMO
The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB). The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.
Assuntos
Antígenos CD28 , Eletroporação , Imunidade Celular , Neoplasias Experimentais/imunologia , RNA Mensageiro , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Animais , Antígenos CD28/genética , Antígenos CD28/imunologia , Humanos , Interleucina-2/imunologia , Células K562 , Camundongos , Muromonab-CD3/imunologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologiaRESUMO
Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or "on-target/off-tumor" toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal-curing cancer with high safety, high efficacy, and low cost.
Assuntos
Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Anticorpos de Cadeia Única/genética , Linfócitos T/imunologia , Movimento Celular/imunologia , Proliferação de Células , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/transplante , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Segurança do Paciente , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Transdução de Sinais , Anticorpos de Cadeia Única/química , Linfócitos T/citologia , Linfócitos T/transplante , Resultado do TratamentoRESUMO
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR) T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Edição de Genes/métodos , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Humanos , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genéticaRESUMO
The therapeutic potential of CRISPR system has already been demonstrated in many instances and begun to overlap with the rapidly expanding field of cancer immunotherapy, especially on the production of genetically modified T cell receptor or chimeric antigen receptor (CAR) T cells. Efficient genomic disruption of multiple gene loci to generate universal donor cells, as well as potent effector T cells resistant to multiple inhibitory pathways such as PD-1 and CTLA4 is an attractive strategy for cell therapy. In this study, we accomplished rapid and efficient multiplex genomic editing, and re-directing T cells with antigen specific CAR via a one-shot CRISPR protocol by incorporation of multiple gRNAs in a CAR lentiviral vector. High efficient double knockout of endogenous TCR and HLA class I could be easily achieved to generate allogeneic universal CAR T cells. We also generated Fas-resistant universal CAR T cells by triple gene disruption. Simultaneous gene editing of four gene loci using the one-shot CRISPR protocol to generate allogeneic universal T cells deficient of both PD1 and CTLA-4 was also attempted.
Assuntos
Edição de Genes/métodos , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T/metabolismo , Animais , Apoptose/genética , Sistemas CRISPR-Cas , Antígeno CTLA-4/genética , Linhagem Celular Tumoral , Células Cultivadas , Genes MHC Classe I/genética , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Células K562 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Receptor de Morte Celular Programada 1/genética , Reprodutibilidade dos Testes , Transplante HeterólogoRESUMO
Purpose: Using gene-disrupted allogeneic T cells as universal effector cells provides an alternative and potentially improves current chimeric antigen receptor (CAR) T-cell therapy against cancers and infectious diseases.Experimental Design: The CRISPR/Cas9 system has recently emerged as a simple and efficient way for multiplex genome engineering. By combining lentiviral delivery of CAR and electro-transfer of Cas9 mRNA and gRNAs targeting endogenous TCR, ß-2 microglobulin (B2M) and PD1 simultaneously, to generate gene-disrupted allogeneic CAR T cells deficient of TCR, HLA class I molecule and PD1.Results: The CRISPR gene-edited CAR T cells showed potent antitumor activities, both in vitro and in animal models and were as potent as non-gene-edited CAR T cells. In addition, the TCR and HLA class I double deficient T cells had reduced alloreactivity and did not cause graft-versus-host disease. Finally, simultaneous triple genome editing by adding the disruption of PD1 led to enhanced in vivo antitumor activity of the gene-disrupted CAR T cells.Conclusions: Gene-disrupted allogeneic CAR and TCR T cells could provide an alternative as a universal donor to autologous T cells, which carry difficulties and high production costs. Gene-disrupted CAR and TCR T cells with disabled checkpoint molecules may be potent effector cells against cancers and infectious diseases. Clin Cancer Res; 23(9); 2255-66. ©2016 AACR.
Assuntos
Edição de Genes , Neoplasias/terapia , Receptor de Morte Celular Programada 1/genética , Linfócitos T/imunologia , Sistemas CRISPR-Cas , Doença Enxerto-Hospedeiro , Humanos , Imunoterapia Adotiva , Ativação Linfocitária/imunologia , Neoplasias/genética , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/deficiência , Receptores de Antígenos de Linfócitos T/deficiência , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologiaRESUMO
Chimeric antigen receptor (CAR)-modified adoptive T-cell therapy has been successfully applied to the treatment of hematologic malignancies, but faces many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced in both naturally occurring and genetically modified tumor-infiltrating lymphocytes (TIL) by inhibitory receptors (IR), namely PD1. We hypothesized that interfering with PD1 signaling would augment CAR T-cell activity against solid tumors. To address this possibility, we introduced a genetically engineered switch receptor construct, comprising the truncated extracellular domain of PD1 and the transmembrane and cytoplasmic signaling domains of CD28, into CAR T cells. We tested the effect of this supplement, "PD1CD28," on human CAR T cells targeting aggressive models of human solid tumors expressing relevant tumor antigens. Treatment of mice bearing large, established solid tumors with PD1CD28 CAR T cells led to significant regression in tumor volume due to enhanced CAR TIL infiltrate, decreased susceptibility to tumor-induced hypofunction, and attenuation of IR expression compared with treatments with CAR T cells alone or PD1 antibodies. Taken together, our findings suggest that the application of PD1CD28 to boost CAR T-cell activity is efficacious against solid tumors via a variety of mechanisms, prompting clinical investigation of this potentially promising treatment modality.
Assuntos
Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígenos CD28/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia Adotiva/métodos , Células K562 , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Carga Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
PURPOSE: Tumor-infiltrating lymphocytes (TILs) become hypofunctional, although the mechanisms are not clear. Our goal was to generate a model of human tumor-induced TIL hypofunction to study mechanisms and to test anti-human therapeutics. EXPERIMENTAL DESIGN: We transduced human T cells with a published, optimized T-cell receptor (TCR) that is directed to a peptide within the cancer testis antigen, NY-ESO-1. After demonstrating antigen-specific in vitro activity, these cells were used to target a human lung cancer line that expressed NY-ESO-1 in the appropriate HLA context growing in immunodeficient mice. The ability of anti-PD1 antibody to augment efficacy was tested. RESULTS: Injection of transgenic T cells had some antitumor activity, but did not eliminate the tumors. The injected T cells became profoundly hypofunctional accompanied by upregulation of PD1, Tim3, and Lag3 with coexpression of multiple inhibitory receptors in a high percentage of cells. This model allowed us to test reagents targeted specifically to human T cells. We found that injections of an anti-PD1 antibody in combination with T cells led to decreased TIL hypofunction and augmented the efficacy of the adoptively transferred T cells. CONCLUSIONS: This model offers a platform for preclinical testing of adjuvant immunotherapeutics targeted to human T cells prior to transition to the bedside. Because the model employs engineering of human T cells with a TCR clone instead of a CAR, it allows for study of the biology of tumor-reactive TILs that signal through an endogenous TCR. The lessons learned from TCR-engineered TILs can thus be applied to tumor-reactive TILs.
Assuntos
Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Proteínas de Membrana/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transferência Adotiva/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Antígenos HLA/imunologia , Humanos , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
Target-mediated toxicity is a major limitation in the development of chimeric antigen T-cell receptors (CAR) for adoptive cell therapy of solid tumors. In this study, we developed a strategy to adjust the affinities of the scFv component of CAR to discriminate tumors overexpressing the target from normal tissues that express it at physiologic levels. A CAR-expressing T-cell panel was generated with target antigen affinities varying over three orders of magnitude. High-affinity cells recognized target expressed at any level, including at levels in normal cells that were undetectable by flow cytometry. Affinity-tuned cells exhibited robust antitumor efficacy similar to high-affinity cells, but spared normal cells expressing physiologic target levels. The use of affinity-tuned scFvs offers a strategy to empower wider use of CAR T cells against validated targets widely overexpressed on solid tumors, including those considered undruggable by this approach.
Assuntos
Receptores ErbB/imunologia , Neoplasias/imunologia , Receptor ErbB-2/imunologia , Receptores de Antígenos/imunologia , Animais , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imunoterapia Adotiva , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptor ErbB-2/antagonistas & inibidores , Receptores de Antígenos/antagonistas & inibidores , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Using lentiviral technology, we recently demonstrated that incorporation of CD27 costimulation into CARs greatly improves antitumor activity and T cell persistence. Still, virus-mediated gene transfer is expensive, laborious and enables long-term persistence, creating therapies which cannot be easily discontinued if toxic. To address these concerns, we utilized a non-integrating RNA platform to engineer human T cells to express FRα-specific, CD27 CARs and tested their capacity to eliminate human FRα(+) cancer. Novel CARs comprised of human components were constructed, C4-27z and C4opt-27z, a codon-optimized variant created for efficient expression. Following RNA electroporation, C4-27z and C4opt-27z CAR expression is initially ubiquitous but progressively declines across T cell populations. In addition, C4-27z and C4opt-27z RNA CAR T cells secrete high levels of Th-1 cytokines and display strong cytolytic function against human FRα(+) cancers in a time- and antigen-dependent manner. Further, C4-27z and C4opt-27z CAR T cells exhibit significant proliferation in vivo, facilitate the complete regression of fully disseminated human ovarian cancer xenografts in mice and reduce the progression of solid ovarian cancer. These results advocate for rapid progression of C4opt-27z RNA CAR to the clinic and establish a new paradigm for preclinical optimization and validation of RNA CAR candidates destined for clinical translation.
Assuntos
Receptor 1 de Folato/metabolismo , Terapia Genética/métodos , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/transplante , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/terapia , RNA/genética , Linfócitos T/transplante , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Terapia Combinada , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica , Eletroporação , Feminino , Receptor 1 de Folato/imunologia , Regulação da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fenótipo , RNA/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
This study compared second-generation chimeric antigen receptors (CAR) encoding signaling domains composed of CD28, ICOS, and 4-1BB (TNFRSF9). Here, we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T cells with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to 3 months following a single stimulation through the T-cell receptor (TCR). Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet (TBX21), EOMES, and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-κB, AKT, ERK, and NFAT. The propagated CAR T cells retained a diverse TCR repertoire, and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore, the design of CARs that have a nonconstitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or nonconstitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials.