Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38776197

RESUMO

Based on multi-omics data and drug information, predicting the response of cancer cell lines to drugs is a crucial area of research in modern oncology, as it can promote the development of personalized treatments. Despite the promising performance achieved by existing models, most of them overlook the variations among different omics and lack effective integration of multi-omics data. Moreover, the explicit modeling of cell line/drug attribute and cell line-drug association has not been thoroughly investigated in existing approaches. To address these issues, we propose RedCDR, a dual relation distillation model for cancer drug response (CDR) prediction. Specifically, a parallel dual-branch architecture is designed to enable both the independent learning and interactive fusion feasible for cell line/drug attribute and cell line-drug association information. To facilitate the adaptive interacting integration of multi-omics data, the proposed multi-omics encoder introduces the multiple similarity relations between cell lines and takes the importance of different omics data into account. To accomplish knowledge transfer from the two independent attribute and association branches to their fusion, a dual relation distillation mechanism consisting of representation distillation and prediction distillation is presented. Experiments conducted on the GDSC and CCLE datasets show that RedCDR outperforms previous state-of-the-art approaches in CDR prediction. The source code is available at https://github.com/mhxu1998/RedCDR.

2.
Biomed Pharmacother ; 175: 116748, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38776683

RESUMO

Doxorubicin (DOX) is a commonly used anthracycline in cancer chemotherapy. The clinical application of DOX is constrained by its cardiotoxicity. Myricetin (MYR) is a natural flavonoid widely present in many plants with antioxidant and anti-inflammatory properties. However, MYR's beneficial effects and mechanisms in alleviating DOX-induced cardiotoxicity (DIC) remain unknown. C57BL/6 mice were injected with 15 mg/kg of DOX to establish the DIC, and MYR solutions were administrated by gavage to investigate its cardioprotective potentials. Histopathological analysis, physiological indicators assessment, transcriptomics analysis, and RT-qPCR were used to elucidate the potential mechanism of MYR in DIC treatment. MYR reduced cardiac injury produced by DOX, decreased levels of cTnI, AST, LDH, and BNP, and improved myocardial injury and fibrosis. MYR effectively prevented DOX-induced oxidative stress, such as lowered MDA levels and elevated SOD, CAT, and GSH activities. MYR effectively suppressed NLRP3 and ASC gene expression levels to inhibit pyroptosis while regulating Caspase1 and Bax levels to reduce cardiac cell apoptosis. According to the transcriptomic analysis, glucose and fatty acid metabolism were associated with differential gene expression. KEGG pathway analysis revealed differential gene enrichment in PPAR and AMPK pathways, among others. Following validation, MYR was found to alleviate DIC by regulating glycolipid metabolism and AMPK pathway-related genes. Our findings demonstrated that MYR could mitigate DIC by regulating the processes of oxidative stress, apoptosis, and pyroptosis. MYR is critical in improving DOX-induced myocardial energy metabolism abnormalities mediated by the AMPK signaling pathway. In conclusion, MYR holds promise as a therapeutic strategy for DIC.

3.
Nat Commun ; 15(1): 3743, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702316

RESUMO

Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.


Assuntos
Proteínas de Choque Térmico HSP90 , Hiperplasia , Fatores de Transcrição Kruppel-Like , Miócitos de Músculo Liso , Neointima , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Animais , Humanos , Masculino , Camundongos , Fístula Arteriovenosa/metabolismo , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/patologia , Proliferação de Células , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/patologia , Neointima/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
4.
Front Pharmacol ; 15: 1396975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725666

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor. In the clinic, usual strategies for OS treatment include surgery, chemotherapy, and radiation. However, all of these therapies have complications that cannot be ignored. Therefore, the search for better OS treatments is urgent. Black phosphorus (BP), a rising star of 2D inorganic nanoparticles, has shown excellent results in OS therapy due to its outstanding photothermal, photodynamic, biodegradable and biocompatible properties. This review aims to present current advances in the use of BP nanoparticles in OS therapy, including the synthesis of BP nanoparticles, properties of BP nanoparticles, types of BP nanoparticles, and modification strategies for BP nanoparticles. In addition, we have discussed comprehensively the application of BP in OS therapy, including single, dual, and multimodal synergistic OS therapies, as well as studies about bone regeneration and antibacterial properties. Finally, we have summarized the conclusions, limitations and perspectives of BP nanoparticles for OS therapy.

5.
Chembiochem ; : e202400105, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639074

RESUMO

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.

6.
Urolithiasis ; 52(1): 63, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613670

RESUMO

This study aims to elucidate the mechanism and potential of Rhizoma alismatis polysaccharides (RAPs) in preventing oxidative damage to human renal proximal tubule epithelial cells. The experimental approach involved incubating HK-2 cells with 100 nm calcium oxalate monohydrate for 24 h to establish a cellular injury model. Protection was provided by RAPs with varying carboxyl group contents: 3.57%, 7.79%, 10.84%, and 15.33%. The safeguarding effect of RAPs was evaluated by analyzing relevant cellular biochemical indicators. Findings demonstrate that RAPs exhibit notable antioxidative properties. They effectively diminish the release of reactive oxygen species, lactate dehydrogenase, and malondialdehyde, a lipid oxidation byproduct. Moreover, RAPs enhance superoxide dismutase activity and mitochondrial membrane potential while attenuating the permeability of the mitochondrial permeability transition pore. Additionally, RAPs significantly reduce levels of inflammatory factors, including NLRP3, TNF-α, IL-6, and NO. This reduction corresponds to the inhibition of overproduced pro-inflammatory mediator nitric oxide and the caspase 3 enzyme, leading to a reduction in cellular apoptosis. RAPs also display the ability to suppress the expression of the HK-2 cell surface adhesion molecule CD44. The observed results collectively underscore the substantial anti-inflammatory and anti-apoptotic potential of all four RAPs. Moreover, their capacity to modulate the expression of cell surface adhesion molecules highlights their potential in inhibiting the formation of kidney stones. Notably, RAP3, boasting the highest carboxyl group content, emerges as the most potent agent in this regard.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Estresse Oxidativo , Inflamação/tratamento farmacológico , Células Epiteliais , Cálculos Renais/tratamento farmacológico , Cálculos Renais/prevenção & controle
7.
J Transl Med ; 22(1): 338, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594692

RESUMO

BACKGROUND: SIRPB1 expression is upregulated in various tumor types, including gliomas, and is known to contribute to tumor progression; nevertheless, its function in the immune milieu of gliomas is still mainly unknown. METHODS: This study, we analyzed 1152 normal samples from the GTEx database and 670 glioma samples from the TCGA database to investigate the relationship between the expression of SIRPB1 and clinicopathological features. Moreover, SIRPB1 gene knockout THP-1 cell lines were constructed using CRISPR/Cas9 and were induced into a co-culture of macrophages and glioma cells in vitro to learn more about the role of SIRPB1 in the glioma immune milieu. Lastly, we established a prognostic model to predict the effect of SIRPB1 on prognosis. RESULTS: Significantly higher levels of SIRPB1 expression were found in gliomas, which had an adverse effect on the immune milieu and correlated poorly with patient survival. SIRPB1 activation with certain antibodies results in SYK phosphorylation and the subsequent activation of calcium, MAPK, and NF-κB signaling pathways. This phenomenon is primarily observed in myeloid-derived cells as opposed to glioma cells. In vitro co-culture demonstrated that macrophages with SIRPB1 knockout showed decreased IL1RA, CCL2, and IL-8, which were recovered upon ectopic expression of SIRPB1 but reduced again following treatment with SYK inhibitor GS9973. Critically, a lower overall survival rate was linked to increased SIRPB1 expression. Making use of SIRPB1 expression along with additional clinicopathological variables, we established a nomogram that showed a high degree of prediction accuracy. CONCLUSIONS: Our study demonstrates that glioma cells can be activated by macrophages via SIRPB1, subsequently reprogramming the TME, suggesting that SIRPB1 could serve as a promising therapeutic target for gliomas.


Assuntos
Anticorpos , Glioma , Humanos , Cálcio , Técnicas de Cocultura , Biologia Computacional , Glioma/genética , Quinase Syk/genética , Microambiente Tumoral
8.
Nat Struct Mol Biol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548954

RESUMO

Oligopeptide permease, OppABCD, belongs to the type I ABC transporter family. Its role is to import oligopeptides into bacteria for nutrient uptake and to modulate the host immune response. OppABCD consists of a cluster C substrate-binding protein (SBP), OppA, membrane-spanning OppB and OppC subunits, and an ATPase, OppD, that contains two nucleotide-binding domains (NBDs). Here, using cryo-electron microscopy, we determined the high-resolution structures of Mycobacterium tuberculosis OppABCD in the resting state, oligopeptide-bound pre-translocation state, AMPPNP-bound pre-catalytic intermediate state and ATP-bound catalytic intermediate state. The structures show an assembly of a cluster C SBP with its ABC translocator and a functionally required [4Fe-4S] cluster-binding domain in OppD. Moreover, the ATP-bound OppABCD structure has an outward-occluded conformation, although no substrate was observed in the transmembrane cavity. Here, we reveal an oligopeptide recognition and translocation mechanism of OppABCD, which provides a perspective on how this and other type I ABC importers facilitate bulk substrate transfer across the lipid bilayer.

9.
J Cancer ; 15(8): 2095-2109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495483

RESUMO

Background: The nicotinic acetylcholine receptor (nAChR) subunit alpha-9 (CHRNA9) is a unique cholinergic receptor, which is involved in tumor proliferation, apoptosis, metastasis and chemotherapy resistance. However, the correlation between the expression level of CHRNA9 in glioma and the clinical features and prognosis of glioma patients has not been clarified. The aim of this study was to verify the expression level of CHRNA9 in glioma and its effect on prognosis by bioinformatics methods. Methods: The RNA-seq data of glioma and normal samples were obtained from the TCGA and GTEx databases. Bioinformatics methods were utilized to analyze the differential expression of CHRNA9 between tumor samples and normal samples. The potential association between CHRNA9 and the clinicopathological features of glioma patients was also investigated. The Kaplan-Meier method and Cox regression were utilized to analyze the relationship between CHRNA9 expression level and survival time and prognostic value of glioma patients. Enrichment analysis was applied to predict gene function and signaling pathways associated with CHRNA9. Experimental verification was performed using tumor tissues and paracancerous tissues from glioma patients. Results: The results of bioinformatics analysis showed that the expression of CHRNA9 was increased in glioma tissues, correlating with poor prognosis and reduced patient survival time. Enrichment analysis suggested that CHRNA9 may interact with the JAK/STAT pathway. CHRNA9 was also found to be abnormally expressed in various other tumors and associated with the expression levels of numerous immune checkpoints in glioma. The findings from the analysis of clinical samples revealed that the expression levels of both mRNA and protein of CHRNA9 in glioma tissues were higher than those in paracancerous tissues. Similarly, the mRNA expression levels of STAT3, IL-6, and TNF-α, which are crucial factors in the STAT3 pathway, were elevated in glioma tissues compared to paracancerous tissues. Conclusion: CHRNA9 is a potential prognostic marker and immunotherapy target for glioma, with its mechanism of action potentially linked to the STAT3 pathway.

10.
Signal Transduct Target Ther ; 9(1): 54, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443334

RESUMO

Respiratory disease caused by coronavirus infection remains a global health crisis. Although several SARS-CoV-2-specific vaccines and direct-acting antivirals are available, their efficacy on emerging coronaviruses in the future, including SARS-CoV-2 variants, might be compromised. Host-targeting antivirals provide preventive and therapeutic strategies to overcome resistance and manage future outbreak of emerging coronaviruses. Cathepsin L (CTSL) and calpain-1 (CAPN1) are host cysteine proteases which play crucial roles in coronaviral entrance into cells and infection-related immune response. Here, two peptidomimetic α-ketoamide compounds, 14a and 14b, were identified as potent dual target inhibitors against CTSL and CAPN1. The X-ray crystal structures of human CTSL and CAPN1 in complex with 14a and 14b revealed the covalent binding of α-ketoamide groups of 14a and 14b to C25 of CTSL and C115 of CAPN1. Both showed potent and broad-spectrum anticoronaviral activities in vitro, and it is worth noting that they exhibited low nanomolar potency against SARS-CoV-2 and its variants of concern (VOCs) with EC50 values ranging from 0.80 to 161.7 nM in various cells. Preliminary mechanistic exploration indicated that they exhibited anticoronaviral activity through blocking viral entrance. Moreover, 14a and 14b exhibited good oral pharmacokinetic properties in mice, rats and dogs, and favorable safety in mice. In addition, both 14a and 14b treatments demonstrated potent antiviral potency against SARS-CoV-2 XBB 1.16 variant infection in a K18-hACE2 transgenic mouse model. And 14b also showed effective antiviral activity against HCoV-OC43 infection in a mouse model with a final survival rate of 60%. Further evaluation showed that 14a and 14b exhibited excellent anti-inflammatory effects in Raw 264.7 mouse macrophages and in mice with acute pneumonia. Taken together, these results suggested that 14a and 14b are promising drug candidates, providing novel insight into developing pan-coronavirus inhibitors with antiviral and anti-inflammatory properties.


Assuntos
COVID-19 , Hepatite C Crônica , Humanos , Animais , Camundongos , Ratos , Cães , Calpaína , Catepsina L , Antivirais/farmacologia , Vacinas contra COVID-19 , Modelos Animais de Doenças , Camundongos Transgênicos , Anti-Inflamatórios
11.
Clin Transl Radiat Oncol ; 46: 100760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38510980

RESUMO

Purpose: MR-guided radiotherapy (MRgRT) has the advantage of utilizing high soft tissue contrast imaging to track daily changes in target and critical organs throughout the entire radiation treatment course. Head and neck (HN) stereotactic body radiation therapy (SBRT) has been increasingly used to treat localized lesions within a shorter timeframe. The purpose of this study is to examine the dosimetric difference between the step-and-shot intensity modulated radiation therapy (IMRT) plans on Elekta Unity and our clinical volumetric modulated arc therapy (VMAT) plans on Varian TrueBeam for HN SBRT. Method: Fourteen patients treated on TrueBeam sTx with VMAT treatment plans were re-planned in the Monaco treatment planning system for Elekta Unity MR-Linac (MRL). The plan qualities, including target coverage, conformity, homogeneity, nearby critical organ doses, gradient index and low dose bath volume, were compared between VMAT and Monaco IMRT plans. Additionally, we evaluated the Unity adaptive plans of adapt-to-position (ATP) and adapt-to-shape (ATS) workflows using simulated setup errors for five patients and assessed the outcomes of our treated patients. Results: Monaco IMRT plans achieved comparable results to VMAT plans in terms of target coverage, uniformity and homogeneity, with slightly higher target maximum and mean doses. The critical organ doses in Monaco IMRT plans all met clinical goals; however, the mean doses and low dose bath volumes were higher than in VMAT plans. The adaptive plans demonstrated that the ATP workflow may result in degraded target coverage and OAR doses for HN SBRT, while the ATS workflow can maintain the plan quality. Conclusion: The use of Monaco treatment planning and online adaptation can achieve dosimetric results comparable to VMAT plans, with the additional benefits of real-time tracking of target volume and nearby critical structures. This offers the potential to treat aggressive and variable tumors in HN SBRT and improve local control and treatment toxicity.

12.
Int J Surg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498406

RESUMO

BACKGROUND: Surgical treatment of complex giant pituitary adenomas (GPAs) presents significant challenges. The efficacy and safety of combining transsphenoidal and transcranial approaches for these tumors remain controversial. In this largest cohort of patients with complex GPAs, we compared the surgical outcomes between those undergoing a combined regimen and a non-combined regimen. We also examined the differences in risks of complications, costs, and logistics between the two groups, which might offer valuable information for the appropriate management of these patients. MATERIALS AND METHODS: This was a multicenter retrospective cohort study conducted at 13 neurosurgical centers. Consecutive patients who received a combined or non-combined regimen for complex GPAs were enrolled. The primary outcome was gross total resection, while secondary outcomes included complications, surgical duration, and relapse. A propensity score-based weighting method was used to account for differences between the groups. RESULTS: Out of 647 patients (298 [46.1%] women, mean age: 48.5 ± 14.0 years) with complex GPAs, 91 were in the combined group and 556 were in the non-combined group. Compared with the non-combined regimen, the combined regimen was associated with a higher probability of gross total resection (50.5% vs. 40.6%, odds ratio [OR]: 2.18, 95% confidence interval [CI]: 1.30-3.63, P = 0.003). The proportion of patients with life-threatening complications was lower in the combined group than in the non-combined group (4.4% vs. 11.2%, OR: 0.25, 95% CI: 0.08-0.78, P = 0.017). No marked differences were found between the groups in terms of other surgical or endocrine-related complications. However, the combined regimen exhibited a longer average surgery duration of 1.3 h (P < 0.001) and higher surgical costs of 22,000 CNY (approximate 3,000 USD, P = 0.022) compared with the non-combined approach. CONCLUSIONS: The combined regimen offered increased rates of total resection and decreased incidence of life-threatening complications, which might be recommended as the first-line choice for these patients.

13.
Comput Med Imaging Graph ; 113: 102353, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38387114

RESUMO

Creating synthetic CT (sCT) from magnetic resonance (MR) images enables MR-based treatment planning in radiation therapy. However, the MR images used for MR-guided adaptive planning are often truncated in the boundary regions due to the limited field of view and the need for sequence optimization. Consequently, the sCT generated from these truncated MR images lacks complete anatomic information, leading to dose calculation error for MR-based adaptive planning. We propose a novel structure-completion generative adversarial network (SC-GAN) to generate sCT with full anatomic details from the truncated MR images. To enable anatomy compensation, we expand input channels of the CT generator by including a body mask and introduce a truncation loss between sCT and real CT. The body mask for each patient was automatically created from the simulation CT scans and transformed to daily MR images by rigid registration as another input for our SC-GAN in addition to the MR images. The truncation loss was constructed by implementing either an auto-segmentor or an edge detector to penalize the difference in body outlines between sCT and real CT. The experimental results show that our SC-GAN achieved much improved accuracy of sCT generation in both truncated and untruncated regions compared to the original cycleGAN and conditional GAN methods.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Simulação por Computador
14.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398629

RESUMO

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Estrofantidina , Humanos , Estrofantidina/farmacologia , Caspase 3/farmacologia , Linhagem Celular Tumoral , Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Microambiente Tumoral , Proteínas Nucleares
15.
J Appl Clin Med Phys ; 25(4): e14259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317597

RESUMO

BACKGROUND: The treatment planning process from segmentation to producing a deliverable plan is time-consuming and labor-intensive. Existing solutions automate the segmentation and planning processes individually. The feasibility of combining auto-segmentation and auto-planning for volumetric modulated arc therapy (VMAT) for rectal cancers in an end-to-end process is not clear. PURPOSE: To create and clinically evaluate a complete end-to-end process for auto-segmentation and auto-planning of VMAT for rectal cancer requiring only the gross tumor volume contour and a CT scan as inputs. METHODS: Patient scans and data were retrospectively selected from our institutional records for patients treated for malignant neoplasm of the rectum. We trained, validated, and tested deep learning auto-segmentation models using nnU-Net architecture for clinical target volume (CTV), bowel bag, large bowel, small bowel, total bowel, femurs, bladder, bone marrow, and female and male genitalia. For the CTV, we identified 174 patients with clinically drawn CTVs. We used data for 18 patients for all structures other than the CTV. The structures were contoured under the guidance of and reviewed by a gastrointestinal (GI) radiation oncologist. The predicted results for CTV in 35 patients and organs at risk (OAR) in six patients were scored by the GI radiation oncologist using a five-point Likert scale. For auto-planning, a RapidPlan knowledge-based planning solution was modeled for VMAT delivery with a prescription of 25 Gy in five fractions. The model was trained and tested on 20 and 34 patients, respectively. The resulting plans were scored by two GI radiation oncologists using a five-point Likert scale. Finally, the end-to-end pipeline was evaluated on 16 patients, and the resulting plans were scored by two GI radiation oncologists. RESULTS: In 31 of 35 patients, CTV contours were clinically acceptable without necessary modifications. The CTV achieved a Dice similarity coefficient of 0.85 (±0.05) and 95% Hausdorff distance of 15.25 (±5.59) mm. All OAR contours were clinically acceptable without edits, except for large and small bowel which were challenging to differentiate. However, contours for total, large, and small bowel were clinically acceptable. The two physicians accepted 100% and 91% of the auto-plans. For the end-to-end pipeline, the two physicians accepted 88% and 62% of the auto-plans. CONCLUSIONS: This study demonstrated that the VMAT treatment planning technique for rectal cancer can be automated to generate clinically acceptable and safe plans with minimal human interventions.


Assuntos
Radioterapia de Intensidade Modulada , Neoplasias Retais , Humanos , Masculino , Feminino , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Dosagem Radioterapêutica , Neoplasias Retais/radioterapia , Reto , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38401088

RESUMO

Background: Lumbar spondylolysis (LS) poses a potential threat, and there is a need to evaluate and compare the effectiveness of direct pars repair techniques. Objective: To assess and compare the clinical and radiographic outcomes of direct pars repair techniques using the pedicle screw hook system (PSHS) and the pedicle screw rod system (PSRS) in young symptomatic patients with lumbar spondylolysis. Methods: A retrospective study was conducted to compare clinical and radiological data in young symptomatic LS patients after surgery. Records of 45 post-surgery LS patients with a minimum 24-month follow-up (January 2014 to June 2019) were reviewed. A total of 26 patients underwent PSHS, and 19 had PSRS. Treatment outcomes were analyzed using the visual analog pain scale (VAS), Oswestry disability index (ODI), MacNab criteria, lumbar fusion status, and Pfirrmann grading standards. Patient baseline characteristics were also compared between the two groups. Results: No disc degeneration was observed in either PSHS or PSRS groups at 24 months postoperatively, according to the Pfirrmann grading scale. The PSRS group outperformed the PSHS group in operative time, intraoperative blood loss, postoperative drainage, length of hospital stays, ODI, VAS values at 3 months postoperatively, and fusion status at 6 months postoperatively. No notable differences were observed in other parameters during the 24-month follow-up period, and no significant surgical complications were recorded. Conclusions: Direct pars repair techniques using PSHS and PSRS yielded satisfactory clinical and radiographic results in young patients with symptomatic LS. PSRS, compared to PSHS, demonstrated greater effectiveness in young individuals with LS and promoted early recovery.

17.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276627

RESUMO

In this paper, the green synthesis of isoeugenol methyl ether (IEME) from eugenol by O-methylation and isomerization is completed using a one-step green process. In the methylation reaction, dimethyl carbonate (DMC) was used as a green chemistry reagent instead of the traditional harmful methylation reagents, in accordance with the current concept of green chemistry. The phase transfer catalyst (PTC) polyethylene glycol 800 (PEG-800) was introduced into the isomerization reaction to break the barrier of difficult contact between solid and liquid phases and drastically reduce the reaction conditions by shortening the reaction time and reducing the alkalinity of the reaction system. The catalytic systems for the one-step green synthesis of IEME were screened, and it was shown that the catalytic system "K2CO3 + PEG-800" was the most effective. The effects of reaction temperature, n(DMC):n(eugenol) ratio, n(PEG-800):n(eugenol) ratio, and n(K2CO3):n(eugenol) ratio on eugenol conversion, IEME yield, and IEME selectivity were investigated. The results showed that the best reaction was achieved at a reaction temperature of 140 °C, a reaction time of 3 h, a DMC drip rate of 0.09 mL/min, and n(eugenol):n(DMC):n(K2CO3):n(PEG-800) = 1:3:0.09:0.08. As a result of the conversion of 93.1% of eugenol to IEME, a yield of 86.1% IEME as well as 91.6% IEME selectivity were obtained.

18.
Biochem Pharmacol ; 219: 115974, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081366

RESUMO

Fatty acid binding protein 5 (FABP5) is an intracellular chaperone of fatty acid molecules that regulates lipid metabolism and cell growth. However, its role in intestinal inflammation remains enigmatic. Through examination of human tissue samples and single-cell data, we observed a significant upregulation of FABP5 within the mucosa of patients afflicted with ulcerative colitis (UC) and Crohn's disease (CD), predominantly localized in intestinal macrophages. Herein, we investigate the regulation of FABP5-IN-1, a FABP5 inhibitor, on various cells of the gut in an inflammatory environment. Our investigations confirmed that FABP5 ameliorates DSS-induced colitis in mice by impeding the differentiation of macrophages into M1 macrophages in vitro and in vivo. Furthermore, following FABP5-IN-1 intervention, we observed a notable restoration of intestinal goblet cells and tuft cells, even under inflammatory conditions. Additionally, FABP5-IN-1 exhibits a protective effect against DSS-induced colitis by promoting the polarization of macrophages towards the M2 phenotype in vivo. In summary, FABP5-IN-1 confers protection against DSS-induced acute colitis through a multifaceted approach, encompassing the reduction of inflammatory macrophage infiltration, macrophage polarization, regulating Th17/Treg cells to play an anti-inflammatory role in IBD. The implications for IBD are underscored by the comprehensive in vivo and in vitro experiments presented in this article, thereby positioning FABP5 as a promising and novel therapeutic target for the treatment of IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo , Ativação de Macrófagos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
19.
Hepatobiliary Pancreat Dis Int ; 23(1): 52-63, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37516591

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is the fourth leading cause of cancer-related deaths worldwide. Previous evidence shows that the expression of circulating RNA ZFR (circZFR) is upregulated in HCC tissues. However, the molecular mechanism of circZFR in HCC is unclear. METHODS: Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was employed to detect the expression of circZFR, microRNA-624-3p (miR-624-3p) and WEE1 in HCC tissues and cells. RNase R assay and actinomycin D treatment assay were used to analyze the characteristics of circZFR. For functional analysis, the capacities of colony formation, cell proliferation, cell apoptosis, migration and invasion were assessed by colony formation assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry assay and transwell assay. Western blot was used to examine the protein levels of WEE1 and epithelial-mesenchymal transition (EMT)-related proteins. The interactions between miR-624-3p and circZFR or WEE1 were validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft models were established to determine the role of circZFR in vivo. RESULTS: circZFR and WEE1 were upregulated, while miR-624-3p expression was reduced in HCC tissues and cells. circZFR could sponge miR-624-3p, and WEE1 was a downstream gene of miR-624-3p. Knockdown of circZFR significantly reduced the malignant behaviors of HCC and that co-transfection with miR-624-3p inhibitor restored this change. Overexpression of WEE1 abolished the inhibitory effect of miR-624-3p mimic on HCC cells. Mechanistically, circZFR acted as a competitive endogenous RNA (ceRNA) to regulate WEE1 expression by targeting miR-624-3p. Furthermore, in vivo studies have illustrated that circZFR knockdown inhibited tumor growth. CONCLUSIONS: circZFR knockdown reduced HCC cell proliferation, migration and invasion and promoted apoptosis by regulating the miR-624-3p/WEE1 axis, suggesting that the circZFR/miR-624-3p/WEE1 axis might be a potential target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
20.
J Laparoendosc Adv Surg Tech A ; 34(2): 182-188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902957

RESUMO

Purpose: To investigate the use of ureteroscope-assisted laparoscopic surgery (UALS) in treating symptomatic prostatic utricle (PU) in children. Materials and Methods: Data on surgically treated cases of PU at the Department of Urology in Hunan Children's Hospital between September 2014 and September 2022 were retrospectively collected and analyzed. The diagnosis was confirmed by cystourethroscopy followed by ureteroscopy, and PU was excised by ureteroscope-assisted laparoscopy. Results: A total of 21 patients with PU were enrolled in this study. The median age of the patients at surgery was 8.1 (4.6-11.5) years. Karyotyping was available for 15 children: 13 (86.7%) were 46XY, 1 (6.7%) was 45X/46XY, and 1 (6.7%) was 45X/46XY/47XYY. The median length of the PU was 5.0 (4.1-7.1) cm. Nineteen patients underwent only ureteroscope-assisted laparoscopic excision, whereas 2 also had a perineal incision. All excisions were successfully performed. The median intraoperative blood loss was 25.0 (20.0-37.5) mL. The median hospital stay and follow-up durations were 18.0 (14.5-25.0) days and 24.0 (13.5-49.0) months, respectively. The patients reported no postoperative clinical symptoms. Conclusion: UALS allows for accurate patient positioning and thorough exposure of the anatomical structures, and it is a safe, effective, and minimally invasive treatment for PU in children.


Assuntos
Laparoscopia , Ureteroscópios , Masculino , Criança , Humanos , Estudos Retrospectivos , Próstata/cirurgia , Sáculo e Utrículo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA