Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 632(8027): 1082-1091, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143224

RESUMO

T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.


Assuntos
Genoma Humano , Genômica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Feminino , Humanos , Masculino , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigenômica , Regulação Leucêmica da Expressão Gênica , Genoma Humano/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Análise de Célula Única , Transcriptoma/genética , Linfócitos T/citologia , Linfócitos T/patologia
2.
N Engl J Med ; 391(4): 320-333, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39047240

RESUMO

BACKGROUND: Many older adults with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) have a relapse despite having a measurable residual disease (MRD)-negative complete remission with combination chemotherapy. The addition of blinatumomab, a bispecific T-cell engager molecule that is approved for the treatment of relapsed, refractory, and MRD-positive BCP-ALL, may have efficacy in patients with MRD-negative remission. METHODS: In a phase 3 trial, we randomly assigned patients 30 to 70 years of age with BCR::ABL1-negative BCP-ALL (with :: indicating fusion) who had MRD-negative remission (defined as <0.01% leukemic cells in bone marrow as assessed on flow cytometry) after induction and intensification chemotherapy to receive four cycles of blinatumomab in addition to four cycles of consolidation chemotherapy or to receive four cycles of consolidation chemotherapy alone. The primary end point was overall survival, and relapse-free survival was a secondary end point. RESULTS: The data and safety monitoring committee reviewed the results from the third efficacy interim analysis and recommended that they be reported. Complete remission with or without full count recovery was observed in 395 of 488 enrolled patients (81%). Of the 224 patients with MRD-negative status, 112 were assigned to each group. The characteristics of the patients were balanced between the groups. At a median follow-up of 43 months, an advantage was observed in the blinatumomab group as compared with the chemotherapy-only group with regard to overall survival (at 3 years: 85% vs. 68%; hazard ratio for death, 0.41; 95% confidence interval [CI], 0.23 to 0.73; P = 0.002), and the 3-year relapse-free survival was 80% with blinatumomab and 64% with chemotherapy alone (hazard ratio for relapse or death, 0.53; 95% CI, 0.32 to 0.87). A higher incidence of neuropsychiatric events was reported in the blinatumomab group than in the chemotherapy-only group. CONCLUSIONS: The addition of blinatumomab to consolidation chemotherapy in adult patients in MRD-negative remission from BCP-ALL significantly improved overall survival. (Funded by the National Institutes of Health and others; E1910 ClinicalTrials.gov number, NCT02003222.).


Assuntos
Antineoplásicos , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia de Consolidação , Intervalo Livre de Doença , Quimioterapia de Indução , Estimativa de Kaplan-Meier , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Recidiva , Indução de Remissão , Análise de Sobrevida
3.
Food Chem ; 457: 140137, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908251

RESUMO

This study showed the significantly differences of basic nutrients and metabolite compounds in nine types of beans involved in soybean, mung bean, pea, and common beans. The metabolomics results showed that serval metabolites such as histidine, proline, 3-alanine, and myricetin which could be used to identify different beans. The random forest model showed that amino acid and fatty acid could be used as special indexes to distinguish different types of beans in practice. The different expressed metabolites among different types of beans were involved in various pathways including alanine, aspartate and glutamate metabolism, arginine and proline metabolism, and purine metabolism. The antioxidant activity was significantly different among different types of beans, and the contents of amino acid, coumarin, and polyphenol contributed the antioxidant activities of beans. Together, these results will provide a comprehensive understanding of metabolites in different types of beans and theoretical guideline for the future application of beans.


Assuntos
Antioxidantes , Glycine max , Pisum sativum , Vigna , Antioxidantes/metabolismo , Antioxidantes/química , Glycine max/química , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Pisum sativum/química , Pisum sativum/metabolismo , Vigna/química , Vigna/metabolismo , Vigna/crescimento & desenvolvimento , Aminoácidos/metabolismo , Aminoácidos/análise , Aminoácidos/química , Fabaceae/química , Fabaceae/metabolismo , Metabolômica , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento
4.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841734

RESUMO

Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.

5.
Blood Adv ; 8(12): 3226-3236, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607410

RESUMO

ABSTRACT: The phase 3 INO-VATE trial demonstrated higher rates of remission, measurable residual disease negativity, and improved overall survival for patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL) who received inotuzumab ozogamicin (InO) vs standard-of-care chemotherapy (SC). Here, we examined associations between genomic alterations and the efficacy of InO. Of 326 randomized patients, 91 (InO, n = 43; SC, n = 48) had samples evaluable for genomic analysis. The spectrum of gene fusions and other genomic alterations observed was comparable with prior studies of adult ALL. Responses to InO were observed in all leukemic subtypes, genomic alterations, and risk groups. Significantly higher rates of complete remission (CR)/CR with incomplete count recovery were observed with InO vs SC in patients with BCR::ABL1-like ALL (85.7% [6/7] vs 0% [0/5]; P = .0076), with TP53 alterations (100% [5/5] vs 12.5% [1/8]; P = .0047), and in the high-risk BCR::ABL1- (BCR::ABL1-like, low-hypodiploid, KMT2A-rearranged) group (83.3% [10/12] vs 10.5% [2/19]; P < .0001). This retrospective, exploratory analysis of the INO-VATE trial demonstrated potential for benefit with InO for patients with R/R ALL across leukemic subtypes, including BCR::ABL1-like ALL, and for those bearing diverse genomic alterations. Further confirmation of the efficacy of InO in patients with R/R ALL exhibiting the BCR::ABL1-like subtype or harboring TP53 alterations is warranted. This trial was registered at www.ClinicalTrials.gov as #NCT01564784.


Assuntos
Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Inotuzumab Ozogamicina/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Idoso , Recidiva , Antineoplásicos Imunológicos/uso terapêutico , Adulto Jovem , Resistencia a Medicamentos Antineoplásicos , Adolescente
6.
Am J Cancer Res ; 14(3): 1258-1277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590425

RESUMO

As the major malignant tumors in the chest, non-small cell lung cancer (NSCLC) and esophageal cancer (EC) bring huge health burden to human beings worldwide. Currently, surgery is still the mainstay for comprehensive treatment for NSCLC and EC, but the prognosis is still poor as the results of cancer recurrence and distant metastasis. Neoadjuvant therapy refers to a single or combined treatment before surgery, aiming to improve the therapeutic effects of the traditional therapies. Unfortunately, the clinical outcomes and effects of neoadjuvant therapy are still controversial due to its apparent advantages and disadvantages, and different patients may respond differentially to the same scheme of neoadjuvant therapy, which makes it urgent and necessary to develop personalized scheme of neoadjuvant therapy for different individuals. Therefore, this review summarizes the novel schemes and strategies of neoadjuvant therapy, which may help to significantly improve of life quality of patients suffering from chest-related malignancies.

7.
Blood ; 144(1): 61-73, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38551807

RESUMO

ABSTRACT: Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO-treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of the response and resistance to InO. Pre- and post-InO-treated patient samples were analyzed by whole genome, exome, and/or transcriptome sequencing. Acquired CD22 mutations were observed in 11% (3/27) of post-InO-relapsed tumor samples, but not in refractory samples (0/16). There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included epitope loss (protein truncation and destabilization) and epitope alteration. Two CD22 mutant cases were post-InO hyper-mutators resulting from error-prone DNA damage repair (nonhomologous/alternative end-joining repair, or mismatch repair deficiency), suggesting that hypermutation drove escape from CD22-directed therapy. CD22-mutant relapses occurred after InO and subsequent hematopoietic stem cell transplantation (HSCT), suggesting that InO eliminated the predominant clones, leaving subclones with acquired CD22 mutations that conferred resistance to InO and subsequently expanded. Acquired loss-of-function mutations in TP53, ATM, and CDKN2A were observed, consistent with a compromise of the G1/S DNA damage checkpoint as a mechanism for evading InO-induced apoptosis. Genome-wide CRISPR/Cas9 screening of cell lines identified DNTT (terminal deoxynucleotidyl transferase) loss as a marker of InO resistance. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. Our findings highlight the importance of defining the basis of CD22 escape and eradication of residual disease before HSCT. The identified mechanisms of escape from CD22-targeted therapy extend beyond antigen loss and provide opportunities to improve therapeutic approaches and overcome resistance. These trials were registered at www.ClinicalTrials.gov as NCT01134575, NCT01371630, and NCT03441061.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Feminino , Mutação , Masculino , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Adolescente
8.
Food Chem ; 443: 138517, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295564

RESUMO

Leaves and stalks, which account for about 45% and 25% of broccoli biomass, respectively, are usually discarded during broccoli production, leading to the waste of green resources. In this study, the phytochemical composition and antioxidant capacity of broccoli florets and their by-products (leaves and stalks) were comprehensively analyzed. The metabolomics identified several unique metabolites (e.g., scopoletin, Harpagoside, and sinalbin) in the leaves and stalks compared to florets. Notably, the leaves were found to be a rich source of flavonoids and coumarins, with superior antioxidant capacity. The random forest model and correlation analysis indicated that flavonoids, coumarin, and indole compounds were the important factors contributing to the antioxidant activity. Moreover, the stalks contained higher levels of carbohydrates and exhibited better antioxidant enzyme activity. Together, these results provided valuable data to support the comprehensive utilization of broccoli waste, the development of new products, and the expansion of the broccoli industry chain.


Assuntos
Antioxidantes , Brassica , Antioxidantes/química , Brassica/química , Folhas de Planta/química , Flavonoides/análise , Carboidratos/análise
9.
medRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38106221

RESUMO

Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of response to InO. Acquired CD22 mutations were observed in 11% (3/27) of post-InO relapsed tumor samples. There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included protein truncation, protein destabilization, and epitope alteration. Hypermutation by error-prone DNA damage repair (alternative end-joining, mismatch repair deficiency) drove CD22 escape. Acquired loss-of-function mutations in TP53 , ATM and CDKN2A were observed, suggesting compromise of the G1/S DNA damage checkpoint as a mechanism of evading InO-induced apoptosis. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. The escape strategies within and beyond antigen loss to CD22-targeted therapy elucidated in this study provide insights into improving therapeutic approaches and overcoming resistance. KEY POINTS: We identified multiple mechanisms of CD22 antigen escape from inotuzumab ozogamicin, including protein truncation, protein destabilization, and epitope alteration.Hypermutation caused by error-prone DNA damage repair was a driver of CD22 mutation and escape.

10.
Curr Med Sci ; 43(6): 1133-1150, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38015361

RESUMO

OBJECTIVE: Pseudogenes are initially regarded as nonfunctional genomic sequences, but some pseudogenes regulate tumor initiation and progression by interacting with other genes to modulate their transcriptional activities. Olfactory receptor family 7 subfamily E member 47 pseudogene (OR7E47P) is expressed broadly in lung tissues and has been identified as a positive regulator in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). This study aimed to elucidate the correlation between OR7E47P and tumor immunity in lung squamous cell carcinoma (LUSC). METHODS: Clinical and molecular information from The Cancer Genome Atlas (TCGA) LUSC cohort was used to identify OR7E47P-related immune genes (ORIGs) by weighted gene correlation network analysis (WGCNA). Based on the ORIGs, 2 OR7E47P clusters were identified using non-negative matrix factorization (NMF) clustering, and the stability of the clustering was tested by an extreme gradient boosting classifier (XGBoost). LASSO-Cox and stepwise regressions were applied to further select prognostic ORIGs and to construct a predictive model (ORPScore) for immunotherapy. The Botling cohorts and 8 immunotherapy cohorts (the Samstein, Braun, Jung, Gide, IMvigor210, Lauss, Van Allen, and Cho cohorts) were included as independent validation cohorts. RESULTS: OR7E47P expression was positively correlated with immune cell infiltration and enrichment of immune-related pathways in LUSC. A total of 57 ORIGs were identified to classify the patients into 2 OR7E47P clusters (Cluster 1 and Cluster 2) with distinct immune, mutation, and stromal programs. Compared to Cluster 1, Cluster 2 had more infiltration by immune and stromal cells, lower mutation rates of driver genes, and higher expression of immune-related proteins. The clustering performed well in the internal and 5 external validation cohorts. Based on the 7 ORIGs (HOPX, STX2, WFS, DUSP22, SLFN13, GGCT, and CCSER2), the ORPScore was constructed to predict the prognosis and the treatment response. In addition, the ORPScore was a better prognostic factor and correlated positively with the immunotherapeutic response in cancer patients. The area under the curve values ranged from 0.584 to 0.805 in the 6 independent immunotherapy cohorts. CONCLUSION: Our study suggests a significant correlation between OR7E47P and TME modulation in LUSC. ORIGs can be applied to molecularly stratify patients, and the ORPScore may serve as a biomarker for clinical decision-making regarding individualized prognostication and immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Pulmão , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Pseudogenes/genética , Microambiente Tumoral/genética
11.
Front Immunol ; 14: 1209282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691917

RESUMO

Background: Rapidly progressive interstitial lung disease (RP-ILD) is the most serious complication of anti-melanoma differentiation-associated gene 5-positive dermatomyositis (anti-MDA5+ DM). This study was performed to assess the prognostic factors of patients with anti-MDA5+ DM and the clinical characteristics and predictors of anti-MDA5+ DM in combination with RP-ILD. Methods: In total, 73 MDA5+ DM patients were enrolled in this study from March 2017 to December 2021. They were divided into survival and non-survival subgroups and non-RP-ILD and RP-ILD subgroups. Results: The lactate dehydrogenase (LDH) concentration and prognostic nutritional index (PNI) were independent prognostic factors in patients with anti-MDA5+ DM: the elevated LDH was associated with increased mortality (p = 0.01), whereas the elevated PNI was associated with reduced mortality (p < 0.001). The elevated LDH was independent risk prognostic factor for patients with anti-MDA5+ DM (HR 2.42, 95% CI: 1.02-4.83, p = 0.039), and the elevated PNI was independent protective prognostic factor (HR, 0.27; 95% CI, 0.08 - 0.94; p = 0.039). Patients who had anti-MDA5+ DM with RP-ILD had a significantly higher white blood cell count and LDH concentration than those without RP-ILD (p = 0.007 and p = 0.019, respectively). In contrast, PNI was significantly lower in patients with RP-ILD than those without RP-ILD (p < 0.001). The white blood cell count and elevated LDH were independent and significant risk factors for RP-ILD (OR 1.54, 95% CI: 1.12 - 2.13, p = 0.009 and OR 8.68, 95% CI: 1.28 - 58.83, p = 0.027, respectively), whereas the lymphocyte was an independent protective factor (OR, 0.11; 95% CI, 0.01 - 0.81; p = 0.03). Conclusion: The elevated LDH and elevated PNI were independent prognostic factors for patients with anti-MDA5+ DM. The elevated LDH was independent risk factor for RP-ILD. Patients with anti-MDA5+ DM could benefit from the measurement of LDH and PNI, which are inexpensive and simple parameters that could be used for diagnosis as well as prediction of the extent of lung involvement and prognosis.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Dermatomiosite/diagnóstico , População do Leste Asiático , Prognóstico , L-Lactato Desidrogenase , Doenças Pulmonares Intersticiais/diagnóstico , Diferenciação Celular
12.
J Chromatogr A ; 1708: 464365, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696128

RESUMO

Developing high-performance magnetic particles for the effective separation and purification of target proteins has become an important topic in the area of biomedical research. In this work, a simple and novel strategy was proposed for fabricating magnetic Fe3O4@agarose-iminodiacetic acid-Ni microspheres (MAIN), which can efficiently and selectively isolate histidine-tagged/rich proteins (His-proteins). Based on the thermoreversible sol-gel transition of agarose, basic magnetic agarose microspheres were prepared through the inverse emulsion method, in which the emulsion contained agarose and amine-modified Fe3O4 nanoparticles. The size of the emulsion was controlled by the emulsification of a high-speed shear machine, which improved the specific surface area of MAIN. Subsequently, the amine-modified Fe3O4 nanoparticles were covalently crosslinked with agarose through epichlorohydrin, which could avoid leakage of the magnetic source during use and increase the stability of MAIN. The microsized MAIN exhibited a clearly visible spherical core-shell structure with a diameter range from 3.4 µm to 9.8 µm, and excellent suspension ability in aqueous solution. The maximum adsorption capacity of MAIN for histidine-rich bovine hemoglobin was 1069.2 mg g-1 at 35 °C, which was higher than those of commercialized and most reported magnetic agarose microspheres/nanoparticles. The MAIN showed excellent adsorption ability and selectivity toward His-proteins in a mixture of histidine-rich bovine serum albumin (BSA) and histidine-poor lysozyme (LYZ). When the amount of LYZ was 5-fold higher than that of BSA, the recovery of BSA reached 75.0%. To prove its practicability, MAIN was successfully employed for the enrichment of histidine-tagged RSV-F0 from the cell culture medium supernatant. According to the optimized conditions, MAIN could enrich approximately 0.1 mg of RSV-F0 from 1 mL of complex biological sample. Therefore, we believe that the novel MAIN could be applicable for efficient separation and purification of His-proteins from complex biological systems.


Assuntos
Histidina , Níquel , Sefarose , Emulsões , Soroalbumina Bovina , Aminas , Íons , Fenômenos Magnéticos
13.
Angew Chem Int Ed Engl ; 62(46): e202312692, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37747050

RESUMO

The precisely modulated synthesis of programmable light-emitting materials remains a challenge. To address this challenge, we construct four tetraphenylethylene-based supramolecular architectures (SA, SB, SC, and SD), revealing that they exhibit higher electrochemiluminescence (ECL) intensities and efficiencies than the tetraphenylethylene monomer and can be classified as highly efficient and precisely modulated intramolecular aggregation-induced electrochemiluminescence (PI-AIECL) systems. The best-performing system (SD) shows a high ECL cathodic efficiency exceeding that of the benchmark tris(2,2'-bipyridyl)ruthenium(II) chloride in aqueous solution by nearly six-fold. The electrochemical characterization of these architectures in an organic solvent provides deeper mechanistic insights, revealing that SD features the lowest electrochemical band gap. Density functional theory calculations indicate that the band gap of the guest ligand in the SD structure is the smallest and most closely matched to that of the host scaffold. Finally, the SD system is used to realize ECL-based cysteine detection (detection limit=14.4 nM) in real samples. Thus, this study not only provides a precisely modulated supramolecular strategy allowing chromophores to be controllably regulated on a molecular scale, but also inspires the programmable synthesis of high-performance aggregation-induced electrochemiluminescence emitters.

14.
Curr Med Sci ; 43(4): 631-646, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558863

RESUMO

Cancer treatment has evolved rapidly due to major advances in tumor immunity research. However, due to the complexity, heterogeneity, and immunosuppressive microenvironment of tumors, the overall efficacy of immunotherapy is only 20%. In recent years, nanoparticles have attracted more attention in the field of cancer immunotherapy because of their remarkable advantages in biocompatibility, precise targeting, and controlled drug delivery. However, the clinical application of nanomedicine also faces many problems concerning biological safety, and the synergistic mechanism of nano-drugs with immunity remains to be elucidated. Our study summarizes the functional characteristics and regulatory mechanisms of nanoparticles in the cancer immune microenvironment and how nanoparticles activate and long-term stimulate innate immunity and adaptive immunity. Finally, the current problems and future development trends regarding the application of nanoparticles are fully discussed and prospected to promote the transformation and application of nanomedicine used in cancer treatment.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Nanomedicina , Sistemas de Liberação de Medicamentos , Imunidade Adaptativa , Microambiente Tumoral
15.
J Mater Chem B ; 11(23): 5108-5116, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37218298

RESUMO

The oxidative stress is a state of imbalance in the body's oxidative balance, which can cause or worsen many diseases. Several studies have focused on the direct scavenging of free radicals, however, the strategy of precisely controlling antioxidant activities remotely and spatiotemporally has rarely been reported. Herein, we report a method inspired by the albumin-triggered biomineralization process with polyphenol-assisted strategy to prepare nanoparticles (TA-BSA@CuS) with NIR-II-targeted photo-enhanced antioxidant capacity. Systematic characterization demonstrated that the introduction of polyphenol (tannic acid (TA)) induced the formation of a CuO-doped heterogeneous structure and CuS nanoparticles. Compared with the TA-free CuS nanoparticles, TA-BSA@CuS exhibited excellent photothermal property in the NIR-II region, which is ascribed to the TA-induced Cu defects and doped CuO. Moreover, the photothermal property of CuS improved the broad-spectrum free radical scavenging efficiency of TA-BSA@CuS, and its H2O2 clearance rate increased by 47.3% under NIR-II irradiation. Meanwhile, TA-BSA@CuS exhibited low biological toxicity and intracellular free radical scavenging ability. Moreover, the excellent photothermal property of TA-BSA@CuS endowed it with good antibacterial ability. Therefore, we expect that this work will pave the way for the synthesis of polyphenolic compounds and the improvement in their antioxidant capacity.


Assuntos
Biomineralização , Polifenóis , Polifenóis/farmacologia , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Albuminas
16.
Anal Chim Acta ; 1259: 341202, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100478

RESUMO

Determination of trace glycoprotein has important guiding significance in clinical diagnosis and is usually achieved by immunoaffinity. However, immunoaffinity possesses inherent drawbacks, such as poor probability of high-quality antibodies, instability of biological reagents, and harmfulness of chemical labels to the body. Herein, we propose an innovative method of peptide-oriented surface imprinting to fabricate artificial antibody for recognition of glycoprotein. By integrating peptide-oriented surface imprinting and PEGylation, an innovative hydrophilic peptide-oriented surface imprinting magnetic nanoparticle (HPIMN) was successfully fabricated with human epidermal growth factor receptor-2 (HER2) as a model glycoprotein template. In addition, we further prepared a novel boronic acid-modified/fluorescein isothiocyanate-loaded/polyethylene glycol-covered carbon nanotube (BFPCN) as fluorescence signal output device, which was loaded with numerous fluorescent molecules could specifically label the cis-diol of glycoprotein at physiological pH via boronate-affinity interaction. To prove the practicability, we proposed a HPIMN-BFPCN strategy, in which the HPIMN first selectively captured the HER2 due to the molecular imprinted recognition and then the BFPCN specific labeled the exposed cis-diol of HER2 based on the boronate-affinity reaction. The HPIMN-BFPCN strategy exhibited ultrahigh sensitivity with limit of detection of 14 fg mL-1 and was successfully used in the determination of HER2 in spiked sample with recovery and relative standard deviation in the range of 99.0%-103.0% and 3.1%-5.6%, respectively. Therefore, we believe that the novel peptide-oriented surface imprinting has great potential to become an universal strategy for fabrication of recognition units for other protein biomarkers, and the synergy sandwich assay could become a powerful tool in prognosis evaluation and clinical diagnosis of glycoprotein-related diseases.


Assuntos
Nanopartículas de Magnetita , Impressão Molecular , Nanotubos de Carbono , Humanos , Nanopartículas de Magnetita/química , Fluorescência , Glicoproteínas/química , Peptídeos , Impressão Molecular/métodos
17.
Eur J Med Chem ; 247: 115053, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587419

RESUMO

Herein 2-cyanoethoxy-N,N,N',N'-tetraisopropyl-phosphorodiamidite(10, PIII, 3.5 eq.) could synergistically react with 3',5'-dihydroxyl groups in a dinucleotide(PV) at the cyclization step for the synthesis of cyclic dinucleotides (CDNs) (c-di-GMP, cGAMP etc.) and their phosphorothioated analogues. A dynamic PIII-PV coordination mechanism has been proposed for the cyclization procedure which is confirmed by the variant 31P NMR data and molecular simulation. Among the mono-phosphorothioated CDNs, two stereoisomers showed different capacity for STING activation and the reason was predicted by molecular modeling. While compound 12b1 showed most potent ability to elicit cytokines (IFNß, IL-6, Cxcl9 and Cxcl10) induction compared to another stereoisomer. Also, 12b1 significantly inhibited the tumor growth in the EO771 model with both 0.1 µg (i.t.) and 2 µg (i.v.) administration through the aid of a Mix delivery system developed by our group, and achieved a 31% long-term survival rate of tumor-bearing mice. 12b1/Mix significantly improved the percentage of CD8+ or CD4+ effector memory T (Tem, CD44highCD62Llow) cells and CD8+ central memory T (Tcm, CD44highCD62Lhigh) cells in the blood of EO771 mice, inducing the immune memory against EO771 tumor cells. Relatively lower dose regimens of 12b1(0.1 µg)/Mix displayed better tumor suppression by more potent STING pathway activation and higher levels of cytokines induction in the tumor.


Assuntos
Citocinas , Neoplasias , Animais , Camundongos , Lipídeos , Nucleotídeos de Citosina/química , Nucleotídeos de Citosina/metabolismo
18.
Cell Tissue Res ; 391(3): 577-594, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527485

RESUMO

Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen (CTA) that is predominantly expressed in normal male gonad tissues and a variety of tumors. PRAME proteins are present in the acrosome and sperm tail, but their role in sperm function is unknown. The objective of this study was to examine the function of the bovine Y-linked PRAME (PRAMEY) during spermatozoal capacitation, the acrosome reaction (AR), and fertilization. Freshly ejaculated spermatozoa were induced to capacitate and undergo AR in vitro. Western blotting results revealed a decrease in the PRAMEY protein in capacitated spermatozoa, and the release of the PRAMEY protein from the acrosome during the AR, suggesting its involvement in sperm capacitation and AR. IVF was performed using in vitro matured bovine oocytes and cauda epididymal spermatozoa either treated with PRAMEY antibody, rabbit IgG, or DPBS. Sperm-egg binding and early embryos were examined at 6 and 45 h post IVF, respectively. The number of spermatozoa that bound per oocyte was nearly two-fold greater in the PRAMEY antibody treatment group (34.4) when compared to both the rabbit IgG (17.6) and DPBS (18.1) controls (P < 0.01). Polyspermy rate in the antibody-treated group (18.9%) was three-fold greater than the rabbit IgG control (6.0%) (P < 0.01). The results indicate that PRAMEY may play a role in anti-polyspermy defense. This study thus provides the initial evidence for the involvement of the PRAME protein family in sperm function and fertilization.


Assuntos
Sêmen , Espermatozoides , Coelhos , Masculino , Animais , Bovinos , Espermatozoides/metabolismo , Fertilização in vitro , Acrossomo , Capacitação Espermática , Imunoglobulina G , Fertilização
19.
ACS Nano ; 16(11): 18329-18343, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36356207

RESUMO

Oxidative stress is a compelling risk factor in chronic kidney diseases and is further aggravated for individuals during extracorporeal blood purification, ultimately leading to multiple complications. Herein, antioxidative cascade metal-phenolic nanozymes (metal-tannic acid nanozymes, M-TA NMs) are synthesized via metal ions-mediated oxidative coupling of polyphenols; then M-TA NMs engineered hemoperfusion microspheres (Cu-TAn@PMS) are constructed for alleviating oxidative stress. M-TA NMs show adjustable broad-spectrum antioxidative activities toward multiple reactive nitrogen and oxygen species (RNOS) due to the adjustable catalytic active centers. Importantly, M-TA NMs could mimic the cascade processes of superoxide dismutase and catalase to maintain intracellular redox balance. Detailed structural and spectral analyses reveal that the existence of a transition metal could decrease the electronic energy band gaps of M-TA NMs to offer better electron transfers for RNOS scavenging. Notably, dynamic blood experiments demonstrate that Cu-TAn@PMS could serve as an antioxidant defense system for blood in hemoperfusion to scavenge intracellular reactive oxygen species (ROS) effectively even in the complex blood environment and further protect endogenous antioxidative enzymes and molecules. In general, this work developed antioxidative cascade nanozymes engineered microspheres with excellent therapeutic efficacy for the treatment of oxidative stress-related diseases, which exhibited potential for clinical blood purification and extended the biomedical applications of nanozymes.


Assuntos
Antioxidantes , Hemofiltração , Estresse Oxidativo , Fenóis , Humanos , Antioxidantes/química , Metais , Nanoestruturas , Espécies Reativas de Oxigênio , Superóxido Dismutase/química
20.
Curr Med Sci ; 42(6): 1273-1284, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36260268

RESUMO

OBJECTIVE: This study aims to investigate the expression, prognostic value, and function of kinesin superfamily 4A (KIF4A) in cervical cancer. METHODS: Cervical cancer cell lines (Hela and SiHa) and TCGA data were used for experimental and bioinformatic analyses. Overall survival (OS) and progression free survival (PFS) were compared between patients with high or low KIF4A expression. Copy number variation (CNV) and somatic mutations of patients were visualized and GISTIC 2.0 was used to identify significantly altered sites. The function of KIF4A was also explored based on transcriptome analysis and validated by experimental methods. Chemotherapeutic and immunotherapeutic benefits were inferred using multiple reference databases and algorithms. RESULTS: Patients with high KIF4A expression had better OS and PFS. KIF4A could inhibit proliferation and migration and induce G1 arrest of cervical cancer cells. Higher CNV load was observed in patients with low KIF4A expression, while the group with low KIF4A expression displayed more significantly altered sites. A total of 13 genes were found to mutate more in the low KIF4A expression group, including NOTCH1 and PUM1. The analysis revealed that low KIF4A expression may indicate an immune escape phenotype, and patients in this group may benefit more from immunotherapy. With respect to chemotherapy, cisplatin and gemcitabine may respond better in patients with high KIF4A expression, while 5-fluorouracil etc. may be responded better in patients with low KIF4A expression CONCLUSION: KIF4A is a tumor suppressor gene in cervical cancer, and it can be used as a prognostic and therapeutic biomarker in cervical cancer.


Assuntos
Neoplasias Hepáticas , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Variações do Número de Cópias de DNA/genética , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias Hepáticas/genética , Biologia Computacional , Proteínas de Ligação a RNA/genética , Cinesinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA