Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 313: 122795, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39232333

RESUMO

Ferroptosis is an iron-dependent form of programmed cell death with the potential to reverse traditional cancer therapy resistance. The combination of ferroptosis with chemotherapy, photodynamic therapy and X-ray therapy has demonstrated remarkably improved therapeutic efficiency. Radiopharmaceutical therapy (RPT) is an emerging approach that achieves precise radiation to diseased tissues via radionuclide delivery. However, insufficient accumulation and retention of therapeutic radiopharmaceuticals in tumor region as well as cancer radioresistance impact treatment efficacy. Here, a nanoassembly of renal clearable ultrasmall iron nanoparticles (USINPs) and 131I-aPD-L1 is prepared via the affinity of fluorophenylboronic acid modified on the USINPs with 131I-aPD-L1. The 150 nm USINAs(131I-aPD-L1) nanoassembly is stable in blood circulation, effectively targets to the tumor and disassembles in the presence of ATP in the tumor microenvironment. Both in vitro and in vivo experiments prove that USINPs-induced ferroptosis boosted the tumor radiosensitization to 131I while 131I-mediated RPT further enhanced ferroptosis. Meanwhile, the immunogenic cell death caused by RPT and ferroptosis combined with PD-L1 immune checkpoint blockade therapy exhibits a strong antitumor immunity. This study provides a novel way to improve the tumor accumulation of ferroptosis inducer and radiopharmaceuticals, insights into the interaction between RPT and ferroptosis and an effective SPECT-guided ferroptosis-enhanced radio-immunotherapy.


Assuntos
Ferroptose , Radioisótopos do Iodo , Compostos Radiofarmacêuticos , Ferroptose/efeitos dos fármacos , Animais , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Camundongos , Radioisótopos do Iodo/uso terapêutico , Radioisótopos do Iodo/química , Linhagem Celular Tumoral , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Ferro/química , Camundongos Endogâmicos BALB C , Imunoterapia/métodos , Radioimunoterapia/métodos , Feminino , Neoplasias/terapia
2.
Cell Signal ; 123: 111372, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39209221

RESUMO

BACKGROUND: Intestinal damage is a common and serious complication in patients with graft-versus-host disease (GVHD). Human placental mesenchymal stromal cells (hPMSCs) ameliorate GVHD tissue damage by exerting anti-oxidative effects; however, the underlying mechanisms remain not fully clear. METHODS: A GVHD mouse model and tumor necrosis factor-α (TNF-α)-stimulated human colon epithelial cell lines NCM460 and HT-29 cells were used to investigate the mechanisms of hPMSCs alleviating GVHD-induced intestinal oxidative damage. RESULTS: hPMSCs reduced TNF-α concentrations and the number of CD3+TNF-α+ T-cells, which were negatively correlated with the expression of claudin-1, occludin, and ZO-1, through CD73 in the colon tissue of GVHD mice. Meanwhile, hPMSCs reduced the mean fluorescence intensity (MFI) of reactive oxygen species (ROS) and the concentration of malondialdehyde (MDA), promoted superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as claudin-1, occludin, and ZO-1 expression, in colonic epithelial cells of GVHD mice and TNF-α-stimulated cells via CD73. Moreover, hPMSCs upregulated adenosine (ADO) concentrations in GVHD mice and TNF-α-stimulated cells and mitigated the loss of tight junction proteins via the CD73/ADO/ADO receptors. Further analysis showed that hPMSCs diminished Fyn expression and enhanced Nrf2, GCLC, and HO-1 expression in both TNF-α-stimulated cells and colonic epithelial cells of GVHD mice by activating PI3K/Akt/GSK-3ß pathway. CONCLUSIONS: The results suggested that hPMSC-mediated redox metabolism balance and promoted tight junction protein expression were achieved via CD73/ADO/PI3K/Akt/GSK-3ß/Fyn/Nrf2 axis, by which alleviating intestinal oxidative injury in GVHD mice.


Assuntos
5'-Nucleotidase , Adenosina , Glicogênio Sintase Quinase 3 beta , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Placenta , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Camundongos , Células-Tronco Mesenquimais/metabolismo , Adenosina/metabolismo , Gravidez , 5'-Nucleotidase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Placenta/metabolismo , Transdução de Sinais , Intestinos/patologia , Camundongos Endogâmicos BALB C
3.
Int Immunopharmacol ; 139: 112689, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39029234

RESUMO

BACKGROUND: Oxidative stress is increased in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients and leads to the development of graft versus host disease (GVHD). Mesenchymal stromal cells (MSCs) can ameliorate GVHD by regulating the function of T cells. However, whether MSCs can modulate erythrocyte antioxidant metabolism and thus reduce GVHD is not known. METHODS: Forty female BALB/c mice were randomly assigned to four groups: the control, GVHDhigh, hPMSC, and PBS groups. A hypoxanthine/xanthine oxidase system was used to steadily and gradually produce superoxide in an in vitro experiment. A scanning microscope was used to examine the ultrastructure of erythrocytes. Laser diffraction analyses were used to analyze erythrocyte deformability. Western blotting was used to measure the expression of the erythrocyte membrane skeleton proteins Band 3 and ß-Spectrin. Corresponding kits were used to assess the levels of oxidative damage and the activity of antioxidant enzymes. RESULTS: Morphological and deformability defects were significantly increased in erythrocytes from GVHD patients. Band 3 and ß-Spectrin expression was also reduced in GVHD patients and model mice. Furthermore, we observed significantly increased oxidative stress-induce injury and decreased antioxidant capability in erythrocytes from both GVHD patients and model mice. Subsequent research showed that human placenta-derived MSC (hPMSC) therapy decreased the GVHD-induced redox imbalance in erythrocytes. Furthermore, our findings suggested that upregulating glucose metabolism promoted both the de novo synthesis and recycling of GSH, which is the primary mechanism by which hPMSCs mediate the increase in antioxidant capacity in erythrocytes. CONCLUSION: Together, our findings suggest that hPMSCs can increase antioxidant capacity by increasing erythrocyte GSH production and thus ameliorate GVHD.


Assuntos
Eritrócitos , Glutationa , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Animais , Feminino , Eritrócitos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Glutationa/metabolismo , Camundongos , Placenta/metabolismo , Gravidez , Transplante de Células-Tronco Mesenquimais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Adulto , Células Cultivadas , Pessoa de Meia-Idade , Deformação Eritrocítica , Modelos Animais de Doenças
4.
Int Immunopharmacol ; 138: 112554, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38968861

RESUMO

BACKGROUND: Human placental mesenchymal stromal cells (hPMSCs) are known to limit graft-versus-host disease (GVHD). CD8+CD122+PD-1+Tregs have been shown to improve the survival of GVHD mice. However, the regulatory roles of hPMSCs in this subgroup remain unclear. Here, the regulatory mechanism of hPMSCs in reducing liver fibrosis in GVHD mice by promoting CD8+CD122+PD-1+Tregs formation and controlling the balance of IL-6 and IL-10 were explored. METHODS: A GVHD mouse model was constructed using C57BL/6J and BALB/c mice and treated with hPMSCs. LX-2 cells were explored to study the effects of IL-6 and IL-10 on the activation of hepatic stellate cells (HSCs). The percentage of CD8+CD122+PD-1+Tregs and IL-10 secretion were determined using FCM. Changes in hepatic tissue were analysed by HE, Masson, multiple immunohistochemical staining and ELISA, and the effects of IL-6 and IL-10 on LX-2 cells were detected using western blotting. RESULTS: hPMSCs enhanced CD8+CD122+PD-1+Treg formation via the CD73/Foxo1 and promoted IL-10, p53, and MMP-8 levels, but inhibited IL-6, HLF, α-SMA, Col1α1, and Fn levels in the liver of GVHD mice through CD73. Positive and negative correlations of IL-6 and IL-10 between HLF were found in liver tissue, respectively. IL-6 upregulated HLF, α-SMA, and Col1α1 expression via JAK2/STAT3 pathway, whereas IL-10 upregulated p53 and inhibited α-SMA and Col1α1 expression in LX-2 cells by activating STAT3. CONCLUSIONS: hPMSCs promoted CD8+CD122+PD-1+Treg formation and IL-10 secretion but inhibited HSCs activation and α-SMA and Col1α1 expression by CD73, thus controlling the balance of IL-6 and IL-10, and alleviating liver injury in GVHD mice.


Assuntos
Proteína Forkhead Box O1 , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Linfócitos T Reguladores , Animais , Feminino , Humanos , Camundongos , Gravidez , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Proteína Forkhead Box O1/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/imunologia , Interleucina-10/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-6/metabolismo , Fígado/patologia , Fígado/imunologia , Fígado/metabolismo , Cirrose Hepática/imunologia , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Placenta/citologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
5.
Eur J Nutr ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864864

RESUMO

PURPOSE: To investigate the independent and joint associations of vitamin B12 and methylmalonic acid (MMA) with all-cause, cardiovascular disease (CVD), and cancer mortality in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: We included 6797 individuals with MASLD from the U.S. National Health and Nutrition Examination Survey. Serum MMA was measured using gas/liquid chromatography-mass spectrometry. Serum vitamin B12 was measured using commercial kits. The separate and joint associations of dietary intake and serum vitamin B12 (cutoff: 400 pg/mL) and MMA (cutoff: 250 nmol/L) levels with mortality were assessed by Cox proportional hazards regression. RESULTS: During a median follow-up of 9.3 years, 1604 deaths were documented, including 438 from CVD and 365 from cancer. In MASLD patients, dietary intake and serum vitamin B12 did not associate with mortality, while MMA was associated with a 1.35-fold increased risk of all-cause mortality (P-trend < 0.001). The adjusted hazard ratios for the joint association of vitamin B12 and MMA with all-cause and CVD mortality were 1 in the B12lowMMAlow group (reference), 1.02 (0.87-1.20) and 1.15 (0.90-1.47) in the B12highMMAlow group, 1.55 (1.29-1.86) and 1.84 (1.28-2.65) in the B12lowMMAhigh group, and 1.82 (1.49-2.21) and 2.28 (1.40-3.71) in the B12highMMAhigh group, respectively. The joint association was modified by serum folate (P-interaction = 0.001). CONCLUSIONS: In MASLD patients, MMA rather than dietary and serum vitamin B12 was positively associated with all-cause mortality. The joint effect of high levels of MMA and vitamin B12 showed the strongest associations with all-cause and CVD mortality, with a significant interaction with serum folate.

6.
Nutr Diabetes ; 14(1): 5, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413565

RESUMO

OBJECTIVE: To investigate the association of timing, frequency, and food quality of night eating with all-cause, cancer, and diabetes mortality. METHODS: This study included 41,744 participants from the US National Health and Nutrition Examination Survey (2002-2018). Night eating information was collected by 24-h dietary recall and the exposures were timing, frequency, and food quality of night eating. Food quality was assessed by latent class analysis. The outcomes were all-cause, cancer, and diabetes mortality, which were identified by the National Death Index and the International Classification of Diseases 10th Revision. Adjusted hazard ratios [aHR] with 95% confidence intervals [CI] were computed by Cox regression. RESULTS: During a median follow-up of 8.7 years, 6066 deaths were documented, including 1381 from cancer and 206 from diabetes. Compared with no night eating (eating before 22:00), the later timing of night eating was associated with higher risk of all-cause and diabetes mortality (each P-trend <0.05) rather than cancer mortality, with the highest risk of eating being 00:00-1:00 (aHR 1.38, 95% CI 1.02-1.88) and being 23:00-00:00 (aHR 2.31, 95% CI 1.21-4.40), respectively. However, the increased risks were not observed for 22:00-23:00. Likewise, one time or over frequency of night eating was associated with higher all-cause and diabetes mortality (each P < 0.05). That risks were further observed in high-dietary-energy-density group of night eating (all-cause mortality: aHR 1.21 [95% CI 1.06-1.38]; diabetes mortality: aHR 1.97 [95% CI 1.13-3.45]), but not in low-dietary-energy-density group. Finally, correlation analysis found positive associations of night eating with glycohemoglobin, fasting glucose, and OGTT. CONCLUSIONS: Night eating was associated with increased all-cause, cancer and diabetes mortality; however, reduction of excess mortality risk was observed when eating before 23:00 or low-dietary-energy-density foods.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Neoplasias , Humanos , Doenças Cardiovasculares/etiologia , Inquéritos Nutricionais , Neoplasias/complicações , Diabetes Mellitus/epidemiologia , Qualidade dos Alimentos
7.
Inflammation ; 47(1): 244-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833615

RESUMO

Mesenchymal stem cells (MSCs) ameliorate graft-versus-host disease (GVHD)-induced tissue damage by exerting immunosuppressive effects. However, the related mechanism remains unclear. Here, we explored the therapeutic effect and mechanism of action of human placental-derived MSCs (hPMSCs) on GVHD-induced mouse liver tissue damage, which shows association with inflammatory responses, fibrosis accompanied by hepatocyte tight junction protein loss, the upregulation of Bax, and the downregulation of Bcl-2. It was observed in GVHD mice and Th1 cell differentiation system that hPMSCs treatment increased IL-10 levels and decreased TNF-α levels in the Th1 subsets via CD73. Moreover, hPMSCs treatment reduced tight junction proteins loss and inhibited hepatocyte apoptosis in the livers of GVHD mice via CD73. ADO level analysis in GVHD mice and the Th1 cell differentiation system showed that hPMSCs could also upregulate ADO levels via CD73. Moreover, hPMSCs enhanced Nrf2 expression and diminished Fyn expression via the CD73/ADO pathway in Th1, TNF-α+, and IL-10+ cells. These results indicated that hPMSCs promoted and inhibited the secretion of IL-10 and TNF-α, respectively, during Th1 cell differentiation through the CD73/ADO/Fyn/Nrf2 axis signaling pathway, thereby alleviating liver tissue injury in GVHD mice.


Assuntos
Doença Enxerto-Hospedeiro , Interleucina-10 , Gravidez , Humanos , Feminino , Animais , Camundongos , Interleucina-10/metabolismo , Células Th1/metabolismo , Fator de Necrose Tumoral alfa , Placenta/metabolismo , Fator 2 Relacionado a NF-E2 , Fígado/metabolismo
8.
Adv Sci (Weinh) ; 11(6): e2307271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072640

RESUMO

Chemotherapy is widely used to treat colorectal cancer (CRC). Despite its substantial benefits, the development of drug resistance and adverse effects remain challenging. This study aimed to elucidate a novel role of glucagon in anti-cancer therapy. In a series of in vitro experiments, glucagon inhibited cell migration and tube formation in both endothelial and tumor cells. In vivo studies demonstrated decreased tumor blood vessels and fewer pseudo-vessels in mice treated with glucagon. The combination of glucagon and chemotherapy exhibited enhanced tumor inhibition. Mechanistic studies demonstrated that glucagon increased the permeability of blood vessels, leading to a pronounced disruption of vessel morphology. Signaling pathway analysis identified a VEGF/VEGFR-dependent mechanism whereby glucagon attenuated angiogenesis through its receptor. Clinical data analysis revealed a positive correlation between elevated glucagon expression and chemotherapy response. This is the first study to reveal a role for glucagon in inhibiting angiogenesis and vascular mimicry. Additionally, the delivery of glucagon-encapsulated PEGylated liposomes to tumor-bearing mice amplified the inhibition of angiogenesis and vascular mimicry, consequently reinforcing chemotherapy efficacy. Collectively, the findings demonstrate the role of glucagon in inhibiting tumor vessel network and suggest the potential utility of glucagon as a promising predictive marker for patients with CRC receiving chemotherapy.


Assuntos
Neoplasias Colorretais , Glucagon , Humanos , Animais , Camundongos , Glucagon/farmacologia , Glucagon/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias Colorretais/patologia , Transdução de Sinais , Linhagem Celular Tumoral
9.
Cell Death Dis ; 14(11): 728, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945598

RESUMO

Multiple tumors are synergistically promoted by c-Met and TRK, and blocking their cross-signalling pathway may give better effects. In this study, we developed a tyrosine kinase inhibitor 1D228, which exhibited excellent anti-tumor activity by targeting c-Met and TRK. Models in vitro, 1D228 showed a significant better inhibition on cancer cell proliferation and migration than the positive drug Tepotinib. Models in vivo, 1D228 showed robust anti-tumor effect on gastric and liver tumor growth with 94.8% and 93.4% of the TGI, respectively, comparing 67.61% and 63.9% of Tepotinib. Importantly, compared with the combination of Larotrectinib and Tepotinib, 1D228 monotherapy in MKN45 xenograft tumor models showed stronger antitumor activity and lower toxicity. Mechanistic studies showed that 1D228 can largely inhibit the phosphorylation of TRKB and c-Met. Interestingly, both kinases, TRKs and c-Met, have been found to be co-expressed at high levels in patients with gastric cancer through IHC. Furthermore, bioinformatics analysis has revealed that both genes are abnormally co-expressed in multiple types of cancer. Cell cycle analysis found that 1D228 induced G0/G1 arrest by inhibiting cyclin D1. Additionally, vascular endothelial cells also showed a pronounced response to 1D228 due to its expression of TRKB and c-Met. 1D228 suppressed the migration and tube formation of endothelial cells, which are the key functions of tumor angiogenesis. Taken together, compound 1D228 may be a promising candidate for the next generation of c-Met and TRK inhibitors for cancer treatment, and offers a novel potential treatment strategy for cancer patients with abnormal expressions of c-Met or NTRK, or simultaneous of them.


Assuntos
Células Endoteliais , Neoplasias Hepáticas , Humanos , Proliferação de Células , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Sci ; 114(12): 4583-4595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752684

RESUMO

Amplification of amino acids synthesis is reported to promote tumorigenesis. The serine/glycine biosynthesis pathway is a reversible conversion of serine and glycine catalyzed by cytoplasmic serine hydroxymethyltransferase (SHMT)1 and mitochondrial SHMT2; however, the role of SHTM1 in renal cell carcinoma (RCC) is still unclear. We found that low SHMT1 expression is correlated with poor survival of RCC patients. The in vitro study showed that overexpression of SHMT1 suppressed RCC proliferation and migration. In the mouse tumor model, SHMT1 significantly retarded RCC tumor growth. Furthermore, by gene network analysis, we found several SHMT1-related genes, among which homeobox D8 (HOXD8) was identified as the SHMT1 regulator. Knockdown of HOXD8 decreased SHMT1 expression, resulting in faster RCC growth, and rescued the SHMT1 overexpression-induced cell migration defects. Additionally, ChIP assay found the binding site of HOXD8 to SHMT1 promoter was at the -456~-254 bp region. Taken together, SHMT1 functions as a tumor suppressor in RCC. The transcription factor HOXD8 can promote SHMT1 expression and suppress RCC cell proliferation and migration, which provides new mechanisms of SHMT1 in RCC tumor growth and might be used as a potential therapeutic target candidate for clinical treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Glicina , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Proteínas de Homeodomínio/genética , Neoplasias Renais/genética , Serina/metabolismo , Fatores de Transcrição
11.
Nanoscale ; 15(26): 11280-11289, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37350173

RESUMO

Protein therapy, an innovative therapeutic strategy, has been extensively used in the treatment of cancer in recent years. However, the sequential delivery of multiple proteins acting separately intracellular and extracellular to their sites of action remains a challenge. Here, we construct a nanosystem (PEI-PEG-TRAIL@IONP-GOx) to sequentially release tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) extracellularly and glucose oxidase (GOx) intracellularly for synergistic cancer treatment. The nanosystem is built as a core-shell structure. The core is a pH responsive nanoassembly of boronic acid modified iron oxide nanoparticles (FPBA-IONPs) and polyphenol decorated GOx. The shell is a PEGylated polyethyleneimine (PEI-PEG) polymer on which TRAIL was coupled by a matrix metalloproteinase-2 (MMP-2) responsive peptide. Once the nanosystems were magnetically guided to the tumor site, TRAIL was quickly released by the extracellular MMP-2 to induce tumor apoptosis and enhanced the cellular uptake of the cores. After cytosolic delivery, FPBA-IONPs and GOx were disassembled intracellularly to trigger a cascade reaction to generate free radicals for tumor inhibition. Both in vitro and in vivo experiments proved the separate delivery of TRAIL and GOx and their remarkable synergistic anti-cancer effect. We believe that this nanosystem can offer a new approach for the multistage delivery of proteins and accomplish the objective of protein cooperation for cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Metaloproteinase 2 da Matriz , Neoplasias/tratamento farmacológico , Polímeros , Peptídeos , Fenômenos Magnéticos , Linhagem Celular Tumoral , Nanopartículas/química
12.
Front Immunol ; 12: 780897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887868

RESUMO

Mesenchymal stem cells (MSCs)-derived exosomes were considered a novel therapeutic approach in many aging-related diseases. This study aimed to clarify the protective effects of human placenta MSCs-derived exosomes (hPMSC-Exo) in aging-related CD4+ T cell senescence and identified the underlying mechanisms using a D-gal induced mouse aging model. Senescent T cells were detected SA-ß-gal stain. The degree of DNA damage was evaluated by detecting the level of 8-OH-dG. The superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities were measured. The expression of aging-related proteins and senescence-associated secretory phenotype (SASP) were detected by Western blot and RT-PCR. We found that hPMSC-Exo treatment markedly decreased oxidative stress damage (ROS and 8-OH-dG), SA-ß-gal positive cell number, aging-related protein expression (p53 and γ-H2AX), and SASP expression (IL-6 and OPN) in senescent CD4+ T cells. Additionally, hPMSC-Exo containing miR-21 effectively downregulated the expression of PTEN, increased p-PI3K and p-AKT expression, and Nrf2 nuclear translocation and the expression of downstream target genes (NQO1 and HO-1) in senescent CD4+ T cells. Furthermore, in vitro studies uncovered that hPMSC-Exo attenuated CD4+ T cell senescence by improving the PTEN/PI3K-Nrf2 axis by using the PTEN inhibitor bpV (HOpic). We also validated that PTEN was a target of miR-21 by using a luciferase reporter assay. Collectively, the obtained results suggested that hPMSC-Exo attenuates CD4+ T cells senescence via carrying miRNA-21 and activating PTEN/PI3K-Nrf2 axis mediated exogenous antioxidant defenses.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Exossomos/metabolismo , Imunossenescência/imunologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/fisiologia , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA