Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Apoptosis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853203

RESUMO

Ferroptosis is a form of cell death that is triggered by the presence of ferrous ions and is characterized by lipid peroxidation induced by these ions. The mechanism exhibits distinct morphological characteristics compared to apoptosis, autophagy, and necrosis. A notable aspect of ferroptosis is its ability to inhibit uncontrolled tumor replication and immortalization, especially in malignant, drug-resistant, and metastatic tumors. Additionally, immunotherapy, a novel therapeutic approach for tumors, has been found to have a reciprocal regulatory relationship with ferroptosis in the context of anti-tumor therapy. A comprehensive analysis of ferroptosis and immunotherapy in tumor therapy is presented in this paper, highlighting the potential for mutual adjuvant effects. Specifically, we discuss the mechanisms underlying ferroptosis and immunotherapy, emphasizing their ability to improve the tumor immune microenvironment and enhance immunotherapeutic effects. Furthermore, we investigate how immunotherapeutic factors may increase the sensitivity of tumor cells to ferroptosis. We aim to provide a prospective view of the promising value of combined ferroptosis and immunotherapy in anticancer therapy by elucidating the mutual regulatory network between each.

2.
CNS Neurosci Ther ; 30(6): e14815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922778

RESUMO

AIMS: Colony stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rapidly progressing neurodegenerative disease caused by CSF1R gene mutations. This study aimed to identify and investigate the effect of a novel intronic mutation (c.1754-3C>G) of CSF1R on splicing. METHODS: A novel intronic mutation was identified using whole-exome sequencing. To investigate the impact of this mutation, we employed various bioinformatics tools to analyze the transcription of the CSF1R gene and the three-dimensional structure of its encoded protein. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the findings. RESULTS: A novel mutation (c.1754-3C>G) in CSF1R was identified, which results in exon 13 skipping due to the disruption of the 3' splice site consensus sequence NYAG/G. This exon skipping event was further validated in the peripheral blood of the mutation carrier through RT-PCR and Sanger sequencing. Protein structure prediction indicated a disruption in the tyrosine kinase domain, with the truncated protein showing significant structural alterations. CONCLUSIONS: Our findings underscore the importance of intronic mis-splicing mutations in the diagnosis and management of CSF1R-related leukoencephalopathy.


Assuntos
Íntrons , Leucoencefalopatias , Mutação , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Humanos , Leucoencefalopatias/genética , Mutação/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Íntrons/genética , Feminino , Masculino , Adulto , Splicing de RNA/genética , Receptor de Fator Estimulador de Colônias de Macrófagos
3.
Biotechnol Adv ; 74: 108395, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906496

RESUMO

Nucleic acid therapy is currently the most promising method for treating tumors and genetic diseases and for preventing infectious diseases. However, the biggest obstacle to this therapy is delivery of the nucleic acids to the target site, which requires overcoming problems such as capture by the immune system, the need to penetrate biofilms, and degradation of nucleic acid performance. Designing suitable delivery vectors is key to solving these problems. Lipids-which consist of a hydrophilic headgroup, a linker, and a hydrophobic tail-are crucial components for the construction of vectors. The headgroup is particularly important because it affects the drug encapsulation rate, the vector cytotoxicity, and the transfection efficiency. Herein, we focus on various headgroup structures (tertiary amines, quaternary ammonium salts, peptides, piperazines, dendrimers, and several others), and we summarize and classify important lipid-based carriers that have been developed in recent years. We also discuss applications of cationic lipids with various headgroups for delivery of nucleic acid drugs, and we analyze how headgroup structure affects transport efficiency and carrier toxicity. Finally, we briefly describe the challenges of developing novel lipid carriers, as well as their prospects.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Lipídeos , Ácidos Nucleicos , Humanos , Lipídeos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/uso terapêutico , Animais , Terapia Genética , Portadores de Fármacos/química
4.
Phytomedicine ; 130: 155729, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38772184

RESUMO

BACKGROUND: Depression is a common and complex mental illness that manifests as persistent episodes of sadness, loss of interest, and decreased energy, which might lead to self-harm and suicide in severe cases. Reportedly, depression affects 3.8 % of the world's population and has been listed as one of the major global public health concerns. In recent years, aromatherapy has been widely used as an alternative and complementary therapy in the prevention and treatment of depression; people can relieve anxiety and depression by sniffing plant aromatic essential oils. Acorus tatarinowii and Panax ginseng essential oils in Chang Shen Hua volatile oil (CSHVO) are derived from Acorus tatarinowii and Panax ginseng, respectively, the main medicines in the famous Chinese medicine prescription Kai Xin San (KXS), Then, these oils are combined with the essential oil of Albizia julibrissin flower to form a new Chinese medicine inhalation preparation, CSHVO. KXS has been widely used in the treatment of depression; however, whether CSHVO can ameliorate depression-like behavior, its pharmacological effects, and the underlying mechanisms of action are yet to be elucidated. STUDY DESIGN AND METHODS: A rat model of chronic and unpredictable mild stimulation (CUMS) combined with orphan rearing was treated with CSHVO for 4 weeks. Using behavioral tests (sucrose preference, force swimming, tail suspension, and open field), the depression-like degree was evaluated. Concurrently, brain homogenate and serum biochemistry were analyzed to assess the changes in the neurotransmitters and inflammatory and neurotrophic factors. Furthermore, tissue samples were collected for histological and protein analyses. In addition, network pharmacology and molecular docking analyses of the major active compounds, potential therapeutic targets, and intervention pathways predicted a role of CSHVO in depression relief. Subsequently, these predictions were confirmed by in vitro experiments using a corticosterone (CORT)-induced PC12 cell damage model. RESULTS: CSHVO inhalation can effectively improve the weight and depression-like behavior of depressed rats and regulate the expression of inflammatory factors and neurotransmitters. Hematoxylin-eosin, Nissl, and immunofluorescence staining indicated that compared to the model group, the pathological damage to the brain tissues of rats in the CSHVO groups was improved. The network pharmacological analysis revealed that 144 CSHVO active compounds mediate 71 targets relevant to depression treatment, most of which are rich in the cAMP signaling and inflammatory cytokine pathways. Protein-protein interaction analysis showed that TNF, IL6, and AKT are the core anti-depressive targets of CSHVO. Molecular docking analysis showed an adequate binding between the active ingredients and the key targets. In vitro experiments showed that compared to the model group, the survival rate of PC12 cells induced by CSHVO intervention was increased, the apoptosis rate was decreased, and the expression of inflammatory cytokines in the cell supernatant was improved. Western blot analysis and immunofluorescence staining confirmed that CSHVO regulates PC12 cells in the CORT model through the cAMP-PKA-CREB signaling pathway, and pretreatment with PKA blocker H89 eliminates the protective effect of CSHVO on CORT-induced PC12 cells. CONCLUSIONS: CSHVO improves CORT-induced injury in the PC12 cell model and CUMS combined with orphan rearing-induced depression model in rats. The antidepressant mechanism of CSHVO is associated with the modulation of the cAMP-PKA-CREB signaling pathway.


Assuntos
Encéfalo , Depressão , Medicamentos de Ervas Chinesas , Óleos Voláteis , Animais , Masculino , Ratos , Acorus/química , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
5.
Life Sci ; 348: 122634, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685558

RESUMO

High-throughput sequencing and multiomics technologies have allowed increasing numbers of biomarkers to be mined and used for disease diagnosis, risk stratification, efficacy assessment, and prognosis prediction. However, the large number and complexity of tumor markers make screening them a substantial challenge. Machine learning (ML) offers new and effective ways to solve the screening problem. ML goes beyond mere data processing and is instrumental in recognizing intricate patterns within data. ML also has a crucial role in modeling dynamic changes associated with diseases. Used together, ML techniques have been included in automatic pipelines for tumor marker screening, thereby enhancing the efficiency and accuracy of the screening process. In this review, we discuss the general processes and common ML algorithms, and highlight recent applications of ML in tumor marker screening of genomic, transcriptomic, proteomic, and metabolomic data of patients with various types of cancers. Finally, the challenges and future prospects of the application of ML in tumor therapy are discussed.


Assuntos
Biomarcadores Tumorais , Aprendizado de Máquina , Neoplasias , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Proteômica/métodos , Detecção Precoce de Câncer/métodos , Algoritmos
6.
Plant Foods Hum Nutr ; 79(2): 526-530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530542

RESUMO

The antiglycation mechanisms of three structurally different salvianolic acids (Sals) including salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and salvianolic acid C (Sal-C) were investigated using the bovine serum albumin (BSA)-fructose model. The results showed that the three compounds could inhibit the formation of glycation products, maintain protein structural stability, mitigate the development of amyloid fibrils and scavenge radicals. Notably, Sal-A possessed the highest anti-glycated activity compared with Sal-B and Sal-C. This may be related to the fact that Sal-A contained the most molecules of caffeic acid (Sal-A, Sal-B, and Sal-C possessing two, one, and zero caffeic acid units, respectively), and caffeic acid played a leading role in the antiglycation properties relative to Danshensu. Moreover, these compounds quenched the intrinsic fluorescence intensity of BSA in a static mode, with the binding constants in the order of Sal-A > Sal-B > Sal-C. Obviously, Sal-A possessed the strongest binding affinity among these compounds, which may be one of the reasons why it exhibited the optimal antiglycation capability. Furthermore, molecular docking demonstrated that the three Sals exerted protective effects on BSA by preventing glycation modification of lysine and arginine residues. These findings would provide valuable insights into the potential application of Sals for alleviating non-enzymatic glycation of protein.


Assuntos
Benzofuranos , Ácidos Cafeicos , Lactatos , Polifenóis , Soroalbumina Bovina , Soroalbumina Bovina/química , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Glicosilação/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/química , Benzofuranos/farmacologia , Benzofuranos/química , Lactatos/farmacologia , Lactatos/química , Alcenos/farmacologia , Alcenos/química , Animais , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Bovinos , Simulação de Acoplamento Molecular , Depsídeos
7.
J Transl Med ; 22(1): 302, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38521921

RESUMO

BACKGROUND: Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by fluctuating muscle weakness. Despite the availability of established therapies, the management of MG symptoms remains suboptimal, partially attributed to lack of efficacy or intolerable side-effects. Therefore, new effective drugs are warranted for treatment of MG. METHODS: By employing an analytical framework that combines Mendelian randomization (MR) and colocalization analysis, we estimate the causal effects of blood druggable expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) on the susceptibility of MG. We subsequently investigated whether potential genetic effects exhibit cell-type specificity by utilizing genetic colocalization analysis to assess the interplay between immune-cell-specific eQTLs and MG risk. RESULTS: We identified significant MR results for four genes (CDC42BPB, CD226, PRSS36, and TNFSF12) using cis-eQTL genetic instruments and three proteins (CTSH, PRSS8, and CPN2) using cis-pQTL genetic instruments. Six of these loci demonstrated evidence of colocalization with MG susceptibility (posterior probability > 0.80). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci. Notably, we identified robust evidence of colocalization, with a posterior probability of 0.854, linking CTSH expression in TH2 cells and MG risk. CONCLUSIONS: This study provides crucial insights into the genetic and molecular factors associated with MG susceptibility, singling out CTSH as a potential candidate for in-depth investigation and clinical consideration. It additionally sheds light on the immune-cell regulatory mechanisms related to the disease. However, further research is imperative to validate these targets and evaluate their feasibility for drug development.


Assuntos
Predisposição Genética para Doença , Miastenia Gravis , Humanos , Multiômica , Estudo de Associação Genômica Ampla , Miastenia Gravis/genética , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética
8.
Carbohydr Polym ; 331: 121831, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388048

RESUMO

An undisclosed polysaccharide, BCP80-2, was isolated from Belamcanda chinensis (L.) DC. Structural investigation revealed that BCP80-2 consists of ten monosaccharide residues including t-α-Araf-(1→, →3,5)-α-Araf-(1→, →5)-α-Araf-(1→, →4)-ß-Xylp-(1→, →3)-α-Rhap-(1→, →4)-ß-Manp-(1→, t-ß-Glcp-(1→, →6)-α-Glcp-(1→, t-ß-Galp-(1→, and→3)-α-Galp-(1→. In vivo activity assays showed that BCP80-2 significantly suppressed neoplasmic growth, metastasis, and angiogenesis in zebrafish. Mechanistic studies have shown that BCP80-2 inhibited cell migration of HepG2 cells by suppressing the FAK signaling pathway. Moreover, BCP80-2 also activated immunomodulation and upregulated the secretion of co-stimulatory molecules CD40, CD86, CD80, and MHC-II. In conclusion, BCP80-2 inhibited tumor progression by targeting the FAK signaling pathway and activating CD40-induced adaptive immunity.


Assuntos
Arabinose , Neoplasias Hepáticas , Animais , Sequência de Carboidratos , Peixe-Zebra , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Neoplasias Hepáticas/tratamento farmacológico
9.
J Transl Med ; 22(1): 43, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200582

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS: Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS: SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS: This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Sulfonas , Animais , Humanos , Camundongos , Angiogênese , Carcinoma Hepatocelular/genética , Dietilnitrosamina , Células Endoteliais , Neoplasias Hepáticas/genética , Metanol , Neovascularização Patológica , Fosfofrutoquinase-2 , Receptores de Esfingosina-1-Fosfato
10.
Int J Biol Macromol ; 255: 127854, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935290

RESUMO

In recent years, the application of nanoparticles formed by coupling metal nanomaterials of photothermal therapy with polysaccharides as modified carriers in the targeted treatment of liver cancer has attracted extensive attention. In the present work, an undescribed homogeneous polysaccharide BCP50-2 was obtained from Belamcanda chinensis (L.) DC. The structural analysis displayed that BCP50-2 contained galactose and a small amount of arabinose, and was mainly composed of six monosaccharide residues: →3,5)-α-l-Araf-(1→, →4)-ß-d-Galp-(1→, →4,6)-ß-d-Galp-(1→, →3)-α-l-Galp-(1→, terminal α-l-Araf, and terminal ß-d-Galp. To enhance the antitumor activity of BCP50-2, BCP50-2-AuNRs were prepared by coupling BCP50-2 with gold nanorods for the treatment of liver cancer. BCP50-2-AuNRs were rod-shaped with a long diameter of 26.8 nm and had good photothermal conversion effects. Under near-infrared (NIR) light irradiation, BCP50-2-AuNRs possessed photothermal effects and suppressed the growth of HepG2, A549, and MCF-7 cells. In addition, BCP50-2-AuNRs inhibited the development of liver cancer by inducing cell apoptosis, arresting the cell cycle in G2/M phases, and inhibiting cell migration. Moreover, BCP50-2-AuNRs inhibited tumor proliferation, migration, and angiogenesis in zebrafish. In summary, BCP50-2-AuNRs may be potentially useful for cancer treatment.


Assuntos
Neoplasias Hepáticas , Nanotubos , Animais , Terapia Fototérmica , Fototerapia , Ouro/química , Peixe-Zebra , Nanotubos/química , Neoplasias Hepáticas/terapia , Polissacarídeos/farmacologia , Linhagem Celular Tumoral
11.
Front Bioeng Biotechnol ; 11: 1230585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600308

RESUMO

Although many carriers for the delivery of chemotherapeutic drugs have been investigated, the disadvantages of passive targeting and uncontrolled drug release limit their utility. Herein, hyaluronic acid (HA) was hydrophobically modified to serve as a carrier for binding to cluster determinant 44 (CD44) overexpressed on tumor cell surfaces. Specifically, after deacetylation, HA was grafted to dodecylamine or tetradecylamine to afford amphiphilic zwitterionic polymer micelles, designated dHAD and dHAT, respectively, for the delivery of paclitaxel (PTX). The micelles were negatively charged at pH 7.4 and positively charged at pH 5.6, and this pH sensitivity facilitated PTX release under acidic conditions. The cell uptake efficiencies of the dHAD-PTX and dHAT-PTX micelles by MCF-7 cells after 4 h of incubation were 96.9% and 95.4%, respectively, and their affinities for CD44 were twice that of HA. Furthermore, the micelles markedly inhibited tumor growth both in vitro and in vivo, with IC50 values of 1.943 µg/mL for dHAD-PTX and 1.874 µg/mL for dHAT-PTX for MCF-7 cells; the tumor inhibition rate of dHAD-PTX (92.96%) was higher than that of dHAT-PTX (78.65%). Importantly, dHAD and dHAT micelles showed negligible systemic toxicity. Our findings suggest that these micelles are promising delivery vehicles for antitumor drugs.

12.
Int J Biol Macromol ; 242(Pt 2): 124736, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148944

RESUMO

Quercetin (QT) is a very effective anticancer drug in combating breast cancer. However, it has several disadvantages such as poor water solubility, low bioavailability and low targeting, which seriously restrict its clinical application. In this work, amphiphilic hyaluronic acid polymers (dHAD) were synthesized by grafting dodecylamine to hyaluronic acid (HA). The dHAD self-assembles with QT to form drug-carrying micelles (dHAD-QT). The dHAD-QT micelles possessed excellent drug-loading capacities (75.9 %) for QT and showed significantly improved CD44 targeting compared with unmodified HA. dHAD-QT micelles exhibited high cytotoxicity and apoptosis-inducing abilities, which were ascribed to the pH-sensitive dHAD-QT micelles accomplishing rapid drug release of QT under low pH condition. Importantly, in vivo experiments showed that dHAD-QT effectively inhibited tumor growth in tumor-bearing mice, with a tumor inhibition rate of 91.8 %. Furthermore, dHAD-QT prolonged the survival time of tumor-bearing mice and reduced the toxicity of the drug to normal tissues. These findings indicate that the designed dHAD-QT micelles have promising potential as efficient nano-drugs for breast cancer treatment.


Assuntos
Micelas , Neoplasias , Animais , Camundongos , Sistemas de Liberação de Medicamentos , Quercetina/farmacologia , Ácido Hialurônico , Mitoxantrona , Linhagem Celular Tumoral , Portadores de Fármacos , Liberação Controlada de Fármacos
13.
Front Genet ; 14: 1111816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065499

RESUMO

Background: A hallmark signature of the tumor microenvironment in head and neck squamous cell carcinoma (HNSCC) is abundantly infiltration of cancer-associated fibroblasts (CAFs), which facilitate HNSCC progression. However, some clinical trials showed targeted CAFs ended in failure, even accelerated cancer progression. Therefore, comprehensive exploration of CAFs should solve the shortcoming and facilitate the CAFs targeted therapies for HNSCC. Methods: In this study, we identified two CAFs gene expression patterns and performed the single-sample gene set enrichment analysis (ssGSEA) to quantify the expression and construct score system. We used multi-methods to reveal the potential mechanisms of CAFs carcinogenesis progression. Finally, we integrated 10 machine learning algorithms and 107 algorithm combinations to construct most accurate and stable risk model. The machine learning algorithms contained random survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal components (SuperPC), generalised boosted regression modelling (GBM), and survival support vector machine (survival-SVM). Results: There are two clusters present with distinct CAFs genes pattern. Compared to the low CafS group, the high CafS group was associated with significant immunosuppression, poor prognosis, and increased prospect of HPV negative. Patients with high CafS also underwent the abundant enrichment of carcinogenic signaling pathways such as angiogenesis, epithelial mesenchymal transition, and coagulation. The MDK and NAMPT ligand-receptor cellular crosstalk between the cancer associated fibroblasts and other cell clusters may mechanistically cause immune escape. Moreover, the random survival forest prognostic model that was developed from 107 machine learning algorithm combinations could most accurately classify HNSCC patients. Conclusion: We revealed that CAFs would cause the activation of some carcinogenesis pathways such as angiogenesis, epithelial mesenchymal transition, and coagulation and revealed unique possibilities to target glycolysis pathways to enhance CAFs targeted therapy. We developed an unprecedentedly stable and powerful risk score for assessing the prognosis. Our study contributes to the understanding of the CAFs microenvironment complexity in patients with head and neck squamous cell carcinoma and serves as a basis for future in-depth CAFs gene clinical exploration.

14.
Biotechnol Adv ; 65: 108130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36933868

RESUMO

Nucleic acid-based therapies such as messenger RNA have the potential to revolutionize modern medicine and enhance the performance of existing pharmaceuticals. The key challenges of mRNA-based therapies are delivering the mRNA safely and effectively to the target tissues and cells and controlling its release from the delivery vehicle. Lipid nanoparticles (LNPs) have been widely studied as drug carriers and are considered to be state-of-the-art technology for nucleic acid delivery. In this review, we begin by presenting the advantages and mechanisms of action of mRNA therapeutics. Then we discuss the design of LNP platforms based on ionizable lipids and the applications of mRNA-LNP vaccines for prevention of infectious diseases and for treatment of cancer and various genetic diseases. Finally, we describe the challenges and future prospects of mRNA-LNP therapeutics.


Assuntos
Lipossomos , Nanopartículas , Portadores de Fármacos , Excipientes , RNA Mensageiro/genética , RNA Interferente Pequeno
15.
Int J Biol Macromol ; 224: 1303-1312, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306902

RESUMO

Photothermal therapy is a novel strategy for cancer treatment, which can kill tumor cells by converting light energy into heat energy through irradiating photothermal conversion materials with laser. As a common photothermal agent, gold nanorods (GNRs) have characteristics of high conversion efficiency and long circulation time in vivo. However, improving stability and reducing toxicity of GNRs remain a significant challenge. In this research, a simple and novel strategy for the synthesis of modified GNRs was proposed. The polysaccharide CL90 was obtained from lemon, which was modified to afford thiolated lemon polysaccharide (SH-CL90). SH-CL90 was used to prepare stable GNRs and give the composite GNRs-SH-CL90, which was found to have good stability in PBS solution and possess high photothermal conversion effects and photothermal stability. The biological experiments revealed that GNRs-SH-CL90 inhibited tumor cell proliferation under near-infrared light irradiation and could induce apoptosis significantly. Furthermore, in vivo experiments supported that GNRs-SH-CL90 could inhibit the proliferation and migration of tumor cells. All the experiments demonstrated that GNRs-SH-CL90 might be promising in the field of cancer treatment.


Assuntos
Ouro , Nanotubos , Ouro/farmacologia , Terapia Fototérmica , Fototerapia , Polissacarídeos , Linhagem Celular Tumoral
16.
Front Mol Biosci ; 10: 1326111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274101

RESUMO

Objectives: This study aimed to describe the effects of low-dose (prednisolone acetate 2.5-7.5 mg/day) glucocorticoids (GCs) maintenance therapy in patients with primary nephrotic syndrome (NS) suffering from coronavirus disease 2019 (COVID-19). Methods: A single-center retrospective study of NS patients with COVID-19 infection in Zhongda Hospital Affiliated to Southeast University from 1 February 2022 to 31 March 2023 was conducted. All enrolled patients underwent renal biopsy for the pathological diagnosis and reached complete remission (CR) or near-CR before COVID-19 infection. According to the maintained therapy regimen, patients were divided into low-dose GCs group and non-GCs group. Results: A total of 125 patients were enrolled in the study. Their median age was 46.0 ± 15.6 years, and the median value of 24-h urine protein was 0.77 g. The majority of these patients received treatment for more than 6 months, with a significant portion achieving CR (29.6%) or near-CR (43.2%). The leading cause of NS was membranous nephropathy (52%). There were no significant differences in the baseline characteristics between low-dose GCs and non-GCs group. As compared to those in the non-GCs group, patients receiving low-dose GCs treatment showed less fatigue or muscle weakness, smell disorder, palpitations, decreased appetite, taste disorder, dizziness, sore throat or difficult to swallow and fever (p < 0.05). Moreover, patients in the low-dose GCs group were with higher median quality of life scores (85.0) than in the non-GCs group (p = 0.001). Further serum inflammatory factor analysis indicated that interleukin-6 (IL-6) levels in the non-GCs group were significantly higher than that in the low-dose GCs group (p < 0.05). Conclusion: Patients with NS in low-dose GCs maintenance therapy stage showed milder symptom, higher quality of life and decreased serum IL-6 levels compared to those, who were not on GCs maintenance therapy. These results suggest the beneficial effect of low-dose GCs therapy in NS patients with CR/near-CR suffering from COVID-19 infection.

17.
Oncogenesis ; 11(1): 67, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333295

RESUMO

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer, the third leading cause of cancer-associated death worldwide. With the increasing prevalence of metabolic conditions, non-alcoholic fatty liver disease (NAFLD) is emerging as the fastest-growing HCC risk factor, and it imposes an additional layer of difficulty in HCC management. Dysregulated hepatic lipids are generally believed to constitute a deleterious environment cultivating the development of NAFLD-associated HCC. However, exactly which lipids or lipid regulators drive this process remains elusive. We report herein that sphingosine kinase 2 (SphK2), a key sphingolipid metabolic enzyme, plays a critical role in NAFLD-associated HCC. Ablation of Sphk2 suppressed HCC development in NAFLD livers via inhibition of hepatocyte proliferation both in vivo and in vitro. Mechanistically, SphK2 deficiency led to downregulation of ceramide transfer protein (CERT) that, in turn, decreased the ratio of pro-cancer sphingomyelin (SM) to anti-cancer ceramide. Overexpression of CERT restored hepatocyte proliferation, colony growth and cell cycle progression. In conclusion, the current study demonstrates that SphK2 is an essential lipid regulator in NAFLD-associated HCC, providing experimental evidence to support clinical trials of SphK2 inhibitors as systemic therapies against HCC.

18.
Front Genet ; 13: 1051051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437964

RESUMO

Background: Immune-checkpoint blockade (ICB) has been routinely implemented to treat head and neck squamous cell carcinoma (HNSCC) patients. However, only a few patients benefit from immune checkpoint inhibitor (ICI) therapies. Methods: In this study, we used a combined cohort (including the GSE41613, GSE65858, TCGA, and CELL cohorts) to identify hub genes significantly associated with ICB and activated CD8+ T-cell gene signatures. We performed single-sample gene set enrichment analysis (ssGSEA) to quantify the expression of hub genes; we then constructed a novel immune signature named "the IMS" that can predict immunotherapy responsiveness, prognosis, immune infiltration, and clinical characteristics. Data from the GSE102349 external cohort and the pembrolizumab cohort obtained from a clinical trial were used to validate the efficiency of the IMS. In addition, we revealed potential mechanisms of the antitumor response by analyzing the HNSCC single-cell database. Finally, we used the LASSO algorithm to build an IMS-related risk model. Results: The high IMS group was associated with significant immune activation, better prognosis, and increased immunotherapy responsiveness; thus, the IMS potentially represents a candidate biomarker for ICB. Moreover, a tumor microenvironment with a higher IMS underwent remarkable metabolic reprogramming characterized by enrichment in the glycolysis/gluconeogenesis, oxidative phosphorylation, and citrate cycle (TCA cycle) pathways. We also revealed key information on cellular crosstalk between the IMS and other immune lineages, which may mechanistically explain immune escape. In addition, we constructed and validated a risk prediction model (CD2, TBC1D10C, and CD3E) that could stratify HNSCC patients based on survival and response to ICB treatment. Conclusion: IMS is a signature closely correlated with the tumor immune microenvironment. The findings of this study contribute to the understanding of the immune landscape in HNSCC patients. IMS may aid in the clinical management of HNSCC patients through the identification of effective immunotherapies for specific patients.

19.
Am J Transl Res ; 14(10): 7226-7232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398228

RESUMO

OBJECTIVES: The aim of this study was to investigate the impact of unified discharge standards on the clinical efficacy and prognosis of hemiarthroplasty in elderly patients with hip fractures. METHODS: Retrospective study of 158 elderly patients with hip fractures who underwent artificial femoral head replacement in our hospital from March 2016 to July 2019 were enrolled. According to the unified discharge standards, patients were divided into the observation (65 cases who met discharge criteria) and control group (93 cases who failed to meet all discharge criteria). Histopathological feature, operation status, postoperative Harris Hip score, therapeutic outcome, postoperative complications, readmission and mortality rate were compared between the two groups. RESULTS: Surgery duration and intraoperative blood loss exhibited no difference between the two groups, while transfusion volume and length of hospital stay were significantly increased in the observation group. There was no significant difference in the Harris Hip score between the two groups 12 months postoperatively. The incidence of postoperative complications during the follow-up period was notably lower in the observation group. In addition, the three-month readmission rate and one-year mortality rate were significantly lower in the observation group. CONCLUSIONS: For elderly patients with hip fractures undergoing artificial femoral head replacement, the incidence of postoperative complications and postoperative readmission/mortality rate could be reduced through the establishment of unified discharge standards, which should be used in future clinical practice.

20.
Biomater Adv ; 139: 212984, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882140

RESUMO

Ionizable cationic lipids have great potential for gene delivery, yet the effect of the molecular structure of such lipids on gene delivery efficiency is an ongoing research challenge. To better understand corresponding structure-function activity relationships, we synthesized four ester-linked, pH-responsive, ionizable cationic lipids. The screened DEDM4 lipid, containing 2-ethylenedimethylamine in the headgroup and a branched-chain tail, exhibited a high delivery efficacy of plasmid DNA and siRNA in A549 cells, which was comparable with that of the commercial reagent lipofectamine 3000 (lipo3000). Moreover, because of its pKa value of 6.35 and pH-sensitivity under acidic conditions, DEDM4 could carry sufficient positive charge in the acidic environment of endosomes and interact with the endosome lumen, leading to destruction of the endomembrane and subsequent release of siRNA into the cytoplasm with endosomal escape. Furthermore, we used DEDM4 to deliver IGF-1R siRNA to induce cancer cell apoptosis, thereby leading to great tumor inhibition. More importantly, it also showed very low toxicity in vivo. These structure-activity data for DEDM4 demonstrate potential clinical applications of DEDM4-mediated gene delivery for cancer.


Assuntos
Ésteres , Lipídeos , Cátions/química , Concentração de Íons de Hidrogênio , Lipídeos/química , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA