Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(4): 3346-3357, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744876

RESUMO

Construction of a well-defined mesoporous nanostructure is crucial for applying nonnoble metals in catalysis and biomedicine owing to their highly exposed active sites and accessible surfaces. However, it remains a great challenge to controllably synthesize superparamagnetic CoFe-based mesoporous nanospheres with tunable compositions and exposed large pores, which are sought for immobilization or adsorption of guest molecules for magnetic capture, isolation, preconcentration, and purification. Herein, a facile assembly strategy of a block copolymer was developed to fabricate a mesoporous CoFeB amorphous alloy with abundant metallic Co/Fe atoms, which served as an ideal scaffold for well-dispersed loading of Au nanoparticles (∼3.1 nm) via the galvanic replacement reaction. The prepared Au-CoFeB possessed high saturation magnetization as well as uniform and large open mesopores (∼12.5 nm), which provided ample accessibility to biomolecules, such as nucleic acids, enzymes, proteins, and antibodies. Through this distinctive combination of superparamagnetism (CoFeB) and biofavorability (Au), the resulting Au-CoFeB was employed as a dispersible nanovehicle for the direct capture and isolation of p53 autoantibody from serum samples. Highly sensitive detection of the autoantibody was achieved with a limit of detection of 0.006 U/mL, which was 50 times lower than that of the conventional p53-ELISA kit-based detection system. Our assay is capable of quantifying differential expression patterns for detecting p53 autoantibodies in ovarian cancer patients. This assay provides a rapid, inexpensive, and portable platform with the potential to detect a wide range of clinically relevant protein biomarkers.


Assuntos
Nanopartículas Metálicas , Feminino , Humanos , Nanopartículas Metálicas/química , Autoanticorpos , Ouro/química , Proteína Supressora de Tumor p53 , Nanopartículas Magnéticas de Óxido de Ferro
2.
Front Cell Dev Biol ; 9: 725630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790658

RESUMO

Mesenchymal stem cells (MSCs) secrete cytokines in a paracrine or autocrine manner to regulate immune response and tissue regeneration. Our previous research revealed that MSCs use the complex of Fas/Fas-associated phosphatase-1 (Fap-1)/caveolin-1 (Cav-1) mediated exocytotic process to regulate cytokine and small extracellular vesicles (EVs) secretion, which contributes to accelerated wound healing. However, the detailed underlying mechanism of cytokine secretion controlled by Cav-1 remains to be explored. We show that Gingiva-derived MSCs (GMSCs) could secrete more C-X-C motif chemokine ligand 10 (CXCL10) but showed lower phospho-Cav-1 (p-Cav-1) expression than skin-derived MSCs (SMSCs). Moreover, dephosphorylation of Cav-1 by a Src kinase inhibitor PP2 significantly enhances CXCL10 secretion, while activating phosphorylation of Cav-1 by H2O2 restraints CXCL10 secretion in GMSCs. We also found that Fas and Fap-1 contribute to the dephosphorylation of Cav-1 to elevate CXCL10 secretion. Tumor necrosis factor-α serves as an activator to up-regulate Fas, Fap-1, and down-regulate p-Cav-1 expression to promote CXCL10 release. Furthermore, local applying p-Cav-1 inhibitor PP2 could accelerate wound healing, reduce the expression of α-smooth muscle actin and increase cleaved-caspase 3 expression. These results indicated that dephosphorylation of Cav-1 could inhibit fibrosis during wound healing. The present study establishes a previously unknown role of p-Cav-1 in controlling cytokine release of MSC and may present a potential therapeutic approach for promoting scarless wound healing.

3.
Stem Cells Transl Med ; 10(7): 956-967, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660433

RESUMO

Mesenchymal stem cells (MSCs) hold great potential in treating patients with diabetes, but the therapeutic effects are not always achieved. Particularly, the clinical factors regulating MSC therapy in this setting are largely unknown. In this study, 24 patients with type 2 diabetes mellitus (T2DM) treated with insulin were selected to receive three intravenous infusions of stem cells from human exfoliated deciduous teeth (SHED) over the course of 6 weeks and were followed up for 12 months. We observed a significant reduction of glycosylated serum albumin level (P < .05) and glycosylated hemoglobin level (P < .05) after SHED transplantation. The total effective rate was 86.36% and 68.18%, respectively, at the end of treatment and follow-up periods. Three patients ceased insulin injections after SHED transplantation. A steamed bread meal test showed that the serum levels of postprandial C-peptide at 2 hours were significantly higher than those at the baseline (P < .05). Further analysis showed that patients with a high level of blood cholesterol and a low baseline level of C-peptide had poor response to SHED transplantation. Some patients experienced a transient fever (11.11%), fatigue (4.17%), or rash (1.39%) after SHED transplantation, which were easily resolved. In summary, SHED infusion is a safe and effective therapy to improve glucose metabolism and islet function in patients with T2DM. Blood lipid levels and baseline islet function may serve as key factors contributing to the therapeutic outcome of MSC transplantation in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Transplante de Células-Tronco Mesenquimais , Dente Decíduo/citologia , Glicemia , Peptídeo C , Diabetes Mellitus Tipo 2/terapia , Humanos , Insulina , Ilhotas Pancreáticas , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA