Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 16(12): 1987767, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686106

RESUMO

Anthocyanins, a flavonoid group of polyphenolic compounds, have evolved in plants since the land was colonized by plants. These bioactive compounds play critical roles in diverse physiological processes. They are synthesized in the cytosol and transported into the vacuole for storage or to other destinations, where they function as bioactive molecules. The mechanisms of anthocyanin synthesis and transport have been well studied. However, the precise regulation of the mechanisms of anthocyanin degradation remains to be elucidated. In this review, we highlight recent progress in the understanding of the characteristics and functions of anthocyanins and class III peroxidases, as well as of the existing evidence of the effects of class III peroxidases on the degradation of anthocyanins and the possible regulatory mechanisms involved.


Assuntos
Antocianinas , Plantas , Antocianinas/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Vacúolos/metabolismo
2.
Neurosci Lett ; 740: 135441, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184037

RESUMO

BACKGROUND: A recent study on early onset Parkinson's disease (PD) revealed that NUS1 is a risk gene for PD. Clinically, essential tremor (ET) is closely related to PD. In this study, we aimed to detect NUS1 variants and assess the effect of those variants on patients with ET. METHODS: The 5 coding regions and the exon-intron boundaries of NUS1 were directly sequenced in 395 patients with ET and an equal number of healthy controls, matched for age and sex. The function of variants was assessed by pathogenic predictive software programs. Genetic analysis of variants was used to evaluate susceptibility to ET. RESULTS: A total of 6 exonic variants were identified, including 3 synonymous and 3 missense variants. The non-synonymous variants were predicted to be tolerable. No variants had significant association with ET (none of the p-values were less than 0.05, using Fisher's exact test). CONCLUSION: Our study suggested that NUS1 variants may not contribute to the risk of ET.


Assuntos
Tremor Essencial/genética , Receptores de Superfície Celular/genética , Adulto , Idoso , Povo Asiático , Estudos de Casos e Controles , China/epidemiologia , Tremor Essencial/epidemiologia , Éxons/genética , Feminino , Predisposição Genética para Doença/epidemiologia , Variação Genética , Ensaios de Triagem em Larga Escala , Humanos , Íntrons/genética , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Software
3.
Sensors (Basel) ; 19(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484403

RESUMO

Surface-enhanced Raman scattering (SERS) is one of the most special and important Raman techniques. An apparent Raman signal can be observed when the target molecules are absorbed onto the surface of the SERS substrates, especially on the "hot spots" of the substrates. Early research focused on exploring the highly active SERS substrates and their detection applications in label-free SERS technology. However, it is a great challenge to use these label-free SERS sensors for detecting hydrophobic or non-polar molecules, especially in complex systems or at low concentrations. Therefore, antibodies, aptamers, and antimicrobial peptides have been used to effectively improve the target selectivity and meet the analysis requirements. Among these selective elements, aptamers are easy to use for synthesis and modifications, and their stability, affinity and specificity are extremely good; they have been successfully used in a variety of testing areas. The combination of SERS detection technology and aptamer recognition ability not only improved the selection accuracy of target molecules, but also improved the sensitivity of the analysis. Variations of aptamer-based SERS sensors have been developed and have achieved satisfactory results in the analysis of small molecules, pathogenic microorganism, mycotoxins, tumor marker and other functional molecules, as well as in successful photothermal therapy of tumors. Herein, we present the latest advances of the aptamer-based SERS sensors, as well as the assembling sensing platforms and the strategies for signal amplification. Furthermore, the existing problems and potential trends of the aptamer-based SERS sensors are discussed.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA