Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 33(4): 271-278, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36106344

RESUMO

Using sulfur mustard analog 2-chloroethyl ethyl sulfide (CEES), we established an in vitro model by poisoning cultured immortalized human bronchial epithelial cells. Nile Red staining revealed lipids accumulated 24 h after a toxic dose of CEES (0.9 mM). Lipidomics analysis showed most of the increased lipids were triglycerides (TGs), and the increase in TGs was further confirmed using a Triglyceride-Glo™ Assay kit. Protein and mRNA levels of DGAT1, an important TG biogenesis enzyme, were increased following 0.4 mM CEES exposure. Under higher dose CEES (0.9 mM) exposure, protein and mRNA levels of PPARγ coactivator-1ɑ (PGC-1ɑ), a well-known transcription factor that regulates fatty acid oxidation, were decreased. Finally, application with DGAT1 inhibitor A 922500 or PGC1ɑ agonist ZLN005 was able to block the CEES-induced TGs increase. Overall, our dissection of CEES-induced TGs accumulation provides new insight into energy metabolism dysfunction upon vesicant exposure.HIGHLIGHTSIn CEES (0.9 mM)-injured cells:Triglycerides (TGs) were abundant in the accumulated lipids.Expression of DGAT1, not DGAT2, was increased.Expression of PGC1ɑ, not PGC1ß, was reduced.DGAT1 inhibitor or PGC1ɑ agonist blocked the CEES-mediated increase in TGs.


Assuntos
Gás de Mostarda , Humanos , Diacilglicerol O-Aciltransferase/genética , Células Epiteliais/efeitos dos fármacos , Lipídeos , Gás de Mostarda/análogos & derivados , Gás de Mostarda/toxicidade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Mensageiro , Sulfetos
2.
Toxicol Lett ; 354: 14-23, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757179

RESUMO

Respiratory system injury is the main cause of mortality for nitrogen mustard (NM)-induced damage. Previous studies indicate that reactive oxygen species (ROS) participates in NM-mediated respiratory injuries, but the detailed mechanism is not quite clear. Human bronchial epithelial cell lines 16HBE and BEAS-2B were treated with HN2, a type of NM. In detail, it was shown that HN2 treatment induced impaired cell viability, excessive mitochondrial ROS production and enhanced cellular apoptosis in bronchial epithelial cells. Moreover, impaired Sirt3/SOD2 axis was observed upon HN2 treatment, with decreased Sirt3 and increased acetylated SOD2 expression levels. Sirt3 overexpression partially ameliorated HN2-induced cell injury. Meanwhile, vitamin D3 treatment partially attenuated HN2-induced apoptosis and improved the mitochondrial functions upon HN2 intervention. In addition, HN2 exposure decreased VDR expression, thus inhibiting the Nrf2 phosphorylation and Sirt3 activation. Inhibition of Nrf2 or Sirt3 could decrease the protective effects of vitamin D3 and enhance mitochondrial ROS production via modulating mitochondrial redox balance. In conclusion, impaired VDR/Nrf2/Sirt3 axis contributed to NM-induced apoptosis, while vitamin D3 supplementation provides protective effects via the activation of VDR and the improvement of mitochondrial functions. This study provides novel mechanism and strategy for NM exposure-induced pulmonary injuries.


Assuntos
Apoptose/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Colecalciferol/farmacologia , Células Epiteliais/efeitos dos fármacos , Compostos de Mostarda Nitrogenada/toxicidade , Substâncias Protetoras/farmacologia , Sistema Respiratório/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Humanos , Sistema Respiratório/fisiopatologia
3.
Toxicology ; 389: 67-73, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28720507

RESUMO

N-methyl-2,2-di(chloroethyl)amine (HN2) is a kind of bifunctional alkyltating agent, which can react with nucleophilic groups in DNA and/or protein to form HN2-bridged crosslinking of target molecules, such as DNA-protein crosslinkings (DPC). O6-methylguanine-DNA methyltransferase (MGMT) is a DNA damage repair enzyme which solely repairs alkyl adduct on DNA directly. However, MGMT was detected to act as a protein cross-linked with DNA via alkylation in presence of HN2, and unexpectedly turned into a DNA damage enhancer in the form of MGMT-DNA cross-link (mDPC). Present study aimed to explore the possible ways to lessen the incorporation of MGMT into DPC as well as to save it for DNA repair. To find out the influencing factors of mDPC formation and cleavage, human bronchial epithelial cell line 16HBE was exposed to HN2 and the factors related with MGMT expression and degradation were investigated. When c-Myc, a negative transcriptional factor of MGMT was inhibited by 10058-F4, MGMT expression and mDPC formation were increased, and more γ-H2AX was also detected. Sustained treatment with O6BG, a specific exogenous substrate and depleter of MGMT, could reduce the level of MGMT and mDPC formation. In contrast, a transient 1h pre-treatment of O6GB before HN2 exposure would cause a high MGMT and mDPC level. MGMT was increasingly ubiquitinated after HN2 exposure in a time-dependent manner. At the same time, MGMT was also SUMOylated with a downward time-dependent manner compared to its ubiquitination. Inhibitors of E1, E2 or E3 ligases of ubiqutination all led to the accumulation of mDPC and total-DPC (tDPC) with the difference as that mDPC was sensitive to E1 inhibitor while tDPC more sensitive to E2 and E3 inhibitor. Our results demonstrated the control of mDPC level could be realized through transcription inhibitory effect of c-Myc, O6GB application, and the acceleration of mDPC ubiquitination and subsequent degradation.


Assuntos
Alquilantes/toxicidade , Brônquios/efeitos dos fármacos , Reagentes de Ligações Cruzadas/toxicidade , Adutos de DNA/metabolismo , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Mecloretamina/toxicidade , Proteínas Supressoras de Tumor/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Adutos de DNA/química , Metilases de Modificação do DNA/química , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Histonas/metabolismo , Humanos , Subunidade p50 de NF-kappa B/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Sumoilação , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Transfecção , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
4.
Mol Neurobiol ; 54(5): 3783-3797, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27271125

RESUMO

Parkinson's disease is a common neurodegenerative disease in the elderly, and mitochondrial defects underlie the pathogenesis of PD. Impairment of mitochondrial homeostasis results in reactive oxygen species formation, which in turn can potentiate the accumulation of dysfunctional mitochondria, forming a vicious cycle in the neuron. Mitochondrial fission/fusion and biogenesis play important roles in maintaining mitochondrial homeostasis. It has been reported that PGC-1α is a powerful transcription factor that is widely involved in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. Therefore, we explored mitochondrial biogenesis, mitochondrial fission/fusion, and especially PGC-1α as the key point in the signaling mechanism of their interaction in rotenone-induced dopamine neurotoxicity. The results showed that mitochondrial number and mass were reduced significantly, accompanied by alterations in proteins known to regulate mitochondrial fission/fusion (MFN2, OPA1, Drp1, and Fis1) and mitochondrial biogenesis (PGC-1α and mtTFA). Further experiments proved that inhibition of mitochondrial fission or promotion of mitochondrial fusion has protective effects in rotenone-induced neurotoxicity and also promotes mitochondrial biogenesis. By establishing cell models of PGC-1α overexpression and reduced expression, we found that PGC-1α can regulate MFN2 and Drp1 protein expression and phosphorylation to influence mitochondrial fission/fusion. In summary, it can be concluded that PGC-1α-mediated cross talk between mitochondrial biogenesis and fission/fusion contributes to rotenone-induced dopaminergic neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/patologia , Dinâmica Mitocondrial , Neurotoxinas/toxicidade , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Rotenona/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos
5.
Toxicol Appl Pharmacol ; 305: 267-273, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27342729

RESUMO

Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.


Assuntos
Alquilantes/toxicidade , Dano ao DNA/fisiologia , Mecloretamina/toxicidade , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Linhagem Celular , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Proteólise
6.
Oxid Med Cell Longev ; 2016: 6705621, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26770656

RESUMO

It has been confirmed that mitochondrial impairment may underlie both sporadic and familial Parkinson's disease (PD). Mitochondrial fission/fusion and biogenesis are key processes in regulating mitochondrial homeostasis. Therefore, we explored whether the protective effect of resveratrol in rotenone-induced neurotoxicity was associated with mitochondrial fission/fusion and biogenesis. The results showed that resveratrol could not only promote mitochondrial mass and DNA copy number but also improve mitochondrial homeostasis and neuron function in rats and PC12 cells damaged by rotenone. We also observed effects with alterations in proteins known to regulate mitochondrial fission/fusion and biogenesis in rotenone-induced neurotoxicity. Therefore, our findings suggest that resveratrol may prevent rotenone-induced neurotoxicity through regulating mitochondrial fission/fusion and biogenesis.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Neurotoxinas/toxicidade , Biogênese de Organelas , Rotenona/toxicidade , Estilbenos/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Apoptose/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Dosagem de Genes , Masculino , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Teste de Desempenho do Rota-Rod , Análise de Sobrevida , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
7.
Cell Mol Neurobiol ; 33(8): 1109-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002177

RESUMO

14-3-3 proteins have been confirmed to be involved in Parkinson's disease. It has been reported that an increase of 14-3-3 (theta, epsilon, and gamma) expression has neuroprotective effect in response to rotenone and MPP(+) in dopaminergic cell culture and transgenic C. elegans with alpha-synuclein overexpression. To further investigate the detail mechanism of 14-3-3 proteins in rotenone-induced dopamine neurotoxicity, we observed the expression of 14-3-3 isoforms, and the influence of 14-3-3epsilon knockdown on autophagic activity and cell function. The results showed that rotenone led to a decrease in expression of 14-3-3 protein and mRNA, and an increase in expression and aggregation of alpha-synuclein protein. Knockdown of 14-3-3epsilon expression in turn further aggravated PC12 cell damage, such as an enhancement of ROS formation, and a reduction of cell viability and ATP production. Further experiments confirmed that the autophagic activity was promoted with 14-3-3epsilon siRNA transfection, including an enhancement of autophagosome formation and the ratio of LC3-II/LC3-I. Therefore, we concluded that the regulation of 14-3-3 proteins in rotenone-induced neurotoxicity might be associated with its isoform 14-3-3epsilon's involvement in autophagy, which might be considered a mechanism in addition to the currently known function of 14-3-3 proteins in neurodegenerative disease pathogenesis.


Assuntos
Proteínas 14-3-3/metabolismo , Autofagia/efeitos dos fármacos , Neurotoxinas/toxicidade , Rotenona/toxicidade , Proteínas 14-3-3/genética , Trifosfato de Adenosina/metabolismo , Animais , Autofagia/genética , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Células PC12 , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Quaternária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transfecção , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA