Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38541433

RESUMO

The 1100 aluminum alloy has been widely used in many industrial fields due to its high specific strength, fracture toughness, excellent thermal conductivity, and corrosion resistance. In this study, the corrosion behavior of the homogenized and hot-extruded 1100 aluminum alloy in acid salt spray environment for different time was studied. The microstructure of the 1100 aluminum alloy before and after corrosion was characterized by an optical microscope (OM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and a laser scanning confocal microscope (LSCM). The difference in corrosion resistance between the homogenized and extruded 1100 aluminum alloy was analyzed via the electrochemical method. The results indicate that after hot extrusion at 400 °C, the microstructure of the 1100 aluminum alloy changes from an equiaxed crystal structure with (111) preferentially distributed in a fibrous structure with (220) preferentially distributed. There was no obvious dynamic recrystallization occurring during extrusion, and the second-phase particles containing Al-Fe-Si were coarse and unevenly distributed. With the increase in corrosion time, corrosion pits appeared on the surface of the 1100 aluminum alloy, and a corrosion product layer was formed on the surface of the homogenized 1100 aluminum alloy, which reduced the corrosion rate. After 96 h of corrosion, the CPR of the extruded samples was 0.619 mm/a, and that of the homogenized samples was 0.442 mm/a. The corrosion resistance of the extruded 1100 aluminum alloy was affected by the microstructure and the second phase, and no protective layer of corrosion products was formed on the surface, resulting in a faster corrosion rate and deeper corrosion pits.

2.
Microbiome ; 11(1): 236, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880759

RESUMO

BACKGROUND: Modern dairy diets have shifted from being forage-based to grain and energy dense. However, feeding high-starch diets can lead to a metabolic disturbance that is linked to dysregulation of the gastrointestinal microbiome and systemic inflammatory response. Plant flavonoids have recently attracted extensive interest due to their anti-inflammatory effects in humans and ruminants. Here, multi-omics analysis was conducted to characterize the biological function and mechanisms of citrus flavonoids in modulating the hindgut microbiome of dairy cows fed a high-starch diet. RESULTS: Citrus flavonoid extract (CFE) significantly lowered serum concentrations of lipopolysaccharide (LPS) proinflammatory cytokines (TNF-α and IL-6), acute phase proteins (LPS-binding protein and haptoglobin) in dairy cows fed a high-starch diet. Dietary CFE supplementation increased fecal butyrate production and decreased fecal LPS. In addition, dietary CFE influenced the overall hindgut microbiota's structure and composition. Notably, potentially beneficial bacteria, including Bacteroides, Bifidobacterium, Alistipes, and Akkermansia, were enriched in CFE and were found to be positively correlated with fecal metabolites and host metabolites. Fecal and serum untargeted metabolomics indicated that CFE supplementation mainly emphasized the metabolic feature "sphingolipid metabolism." Metabolites associated with the sphingolipid metabolism pathway were positively associated with increased microorganisms in dairy cows fed CFE, particularly Bacteroides. Serum lipidomics analysis showed that the total contents of ceramide and sphingomyelin were decreased by CFE addition. Some differentially abundant sphingolipid species were markedly associated with serum IL-6, TNF-α, LPS, and fecal Bacteroides. Metaproteomics revealed that dietary supplementation with CFE strongly impacted the overall fecal bacterial protein profile and function. In CFE cows, enzymes involved in carbon metabolism, sphingolipid metabolism, and valine, leucine, and isoleucine biosynthesis were upregulated. CONCLUSIONS: Our research indicates the importance of bacterial sphingolipids in maintaining hindgut symbiosis and homeostasis. Dietary supplementation with CFE can decrease systemic inflammation by maintaining hindgut microbiota homeostasis and regulating sphingolipid metabolism in dairy cows fed a high-starch diet. Video Abstract.


Assuntos
Microbiota , Amido , Animais , Bovinos , Feminino , Ração Animal/análise , Dieta/veterinária , Fermentação , Flavonoides/metabolismo , Homeostase , Interleucina-6/metabolismo , Lactação , Lipopolissacarídeos , Multiômica , Rúmen/metabolismo , Esfingolipídeos/metabolismo , Amido/metabolismo , Fator de Necrose Tumoral alfa
3.
Anim Nutr ; 13: 386-400, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214215

RESUMO

The objectives of this study were to determine the effects of dietary supplementation with citrus flavonoid extracts (CFE) on milk performance, serum biochemistry parameters, fecal volatile fatty acids, fecal microbial community, and fecal metabolites in dairy cows. Eight multiparous lactating Holstein cows were used in a replicated 4 × 4 Latin square design (21-day period). Cows were fed a basal diet without addition (CON) or basal diet with added CFE at 50 (CFE50), 100 (CFE10), and 150 g/d (CFE150). Feeding CFE up to 150 g/d increased milk yield and milk lactose percentage. Supplementary CFE linearly decreased milk somatic cell count. Serum cytokines interleukin-1ß (IL-1ß), IL-2, IL-6, and tumor necrosis factor-α (TNF-α) concentrations decreased linearly as the levels of CFE increased. Cows in CFE150 had lower serum lipopolysaccharide and lipopolysaccharide binding protein compared with CON. These results indicate feeding CFE decreased systemic inflammation and endotoxin levels in dairy cows. Furthermore, feeding CFE linearly increased the concentrations of total volatile fatty acids, acetate, and butyrate in feces. The relative abundances of beneficial bacteria Bifidobacterium spp., Clostridium coccoides-Eubacterium rectale group, and Faecalibacterium prausnitzii in feces increased linearly with increasing CFE supplementation. The diversity and community structure of fecal microbiota were unaffected by CFE supplementation. However, supplementing CFE reduced the relative abundances of genera Ruminococcus_torques_group, Roseburia, and Lachnospira, but increased genera Bacteroides and Phascolarctobacterium. Metabolomics analysis showed that supplementary CFE resulted in a significant modification in the fecal metabolites profile. Compared with CON, fecal naringenin, hesperetin, hippuric acid, and sphingosine concentrations were greater in CFE150 cows, while fecal GlcCer(d18:1/20:0), Cer(d18:0/24:0), Cer(d18:0/22:0), sphinganine, and deoxycholic acid concentrations were less in CFE150 cows. Predicted pathway analysis suggested that "sphingolipid metabolism" was significantly enriched. Overall, these results indicate that citrus flavonoids could exert health-promoting effects by modulating hindgut microbiome and metabolism in lactating cows.

4.
Food Res Int ; 161: 111767, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192874

RESUMO

Eight lactating cows were used to determine the effects of citrus peel extract (CPE) on milk performance, antioxidant properties, and milk lipids composition. CPE supplementation up to 150 g/d (CPE150) increased milk yield and the proportions of unsaturated fatty acids of conjugated linoleic acid. CPE with abundant polyphenol and flavonoids can transfer these bioactive substances to mammary gland and improve the antioxidant properties of milk obtained from cows. Lipidomics revealed that 56 lipid species were altered between CON vs CPE150, and there were five key differential metabolic pathways. In particular, milk phosphatidylethanolamine and phosphatidylcholine were significantly increased with dietary CPE supplementation. In summary, our results provide insights into the modifications in the milk components and milk quality of dairy cows received CPE. The inclusion of CPE in the diet of dairy cows may be an effective and natural way to increase the antioxidant amounts and beneficial lipids in milk.


Assuntos
Citrus , Ácidos Linoleicos Conjugados , Ração Animal/análise , Animais , Antioxidantes/farmacologia , Bovinos , Cromatografia Líquida , Suplementos Nutricionais , Feminino , Lactação , Ácidos Linoleicos Conjugados/metabolismo , Lipidômica , Leite/metabolismo , Fosfatidilcolinas , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologia , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Espectrometria de Massas em Tandem
5.
Int Immunopharmacol ; 112: 109206, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36058035

RESUMO

Streptococcus agalactiae is one of the main pathogens associated with bovine mastitis. The invasion of S. agalactiae in bovine mammary epithelial cells (BMECs) has been implicated as a key event in the pathogenesis of mastitis. Matrine is known for its various pharmacological activities, such as immune response regulation and anti-inflammation. The primary aim of the research was to investigate the preventive effect of matrine on S. agalactiae-induced inflammation in BMECs along with underlying molecular mechanisms. Our data showed matrine at the concentrations of 50-100 µg/mL promoted BMECs proliferation without infection, and decreased cytotoxicity induced by S. agalactiae. Subsequently, BMECs were pre-treated with matrine (50, 75, or 100 µg/mL) for 24 h, followed by the infection with S. agalactiae for an additional 6 h. Pretreatment with matrine followed by S. agalactiae treatment decreased cell apoptosis of BMECs. Also, pretreatment of matrine to BMECs prevented the invasion of S. agalactiae. The mRNA abundances of IL-1ß, IL-6, IL-8, and TNF-α were down-regulated in S. agalactiae-infected cells pretreated with matrine. In addition, the greater ratios of protein NF-κB p-p65/p65, p-IκBα/IκBα, p-38/38, and p-ERK/ERK induced by S. agalactiae were attenuated due to matrine treatment. Furthermore, pretreatment of BMECs with matrine impeded the degradation of TAK1 induced by S. agalactiae infection. These results suggest matrine could be a potential modulator in immune response of the mammary gland. In conclusion, matrine prevents cellular damage due to S. agalactiae infection by the modulation of NF-κB and MAPK signaling pathways and pro-inflammatory cytokine production.


Assuntos
Mastite Bovina , NF-kappa B , Feminino , Bovinos , Animais , NF-kappa B/metabolismo , Streptococcus agalactiae , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mastite Bovina/tratamento farmacológico , Células Epiteliais , Sistema de Sinalização das MAP Quinases , RNA Mensageiro/metabolismo , Glândulas Mamárias Animais , Matrinas
6.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859601

RESUMO

Six steers were used to study the effects of dietary supplementation with sodium sulfate (Na2SO4) on rumen fermentation, nutrient digestion, rumen microbiota, and plasma metabolites. The animals were fed a basal ration with Na2SO4 added at 0 g/day (sulfur [S] content of 0.115% dry matter [DM]), 20 g/day (S at 0.185% DM), or 40 g/day (S at 0.255% DM) in a replicate 3-by-3 Latin square design. The results indicated that supplementing with Na2SO4 increased the ruminal concentration of total volatile fatty acids, the molar proportions of acetate and butyrate, the ruminal concentrations of microbial protein, SO42--S, and S2--S, and the digestibility of fiber, while it decreased the molar proportion of propionate and the ruminal concentration of ammonia nitrogen. Supplementing with Na2SO4 increased the diversity and the richness of rumen microbiota and the relative abundances of the phylum Firmicutes and genera Ruminococcus 2, Rikenellaceae RC9 gut group, and Desulfovibrio, whereas it decreased the relative abundances of the phylum Bacteroidetes and genera Prevotella 1, Prevotellaceae UCG-001, and Treponema 2 Supplementing with Na2SO4 also increased the plasma concentrations of amino acids (l-arginine, l-methionine, l-cysteine, and l-lysine), purine derivatives (xanthine and hypoxanthine), vitamins (thiamine and biotin), and lipids (acetylcarnitine and l-carnitine). It was concluded that supplementing the steer ration with Na2SO4 was beneficial for improving the rumen fermentation, fiber digestibility, and nutrient metabolism through modulating the rumen microbial community.IMPORTANCE Essential elements like nitrogen and sulfur greatly affect rumen fermentation and metabolism in ruminants. However, little knowledge is available on the effects of sulfur on the rumen microbiota and plasma metabolome. The results of the present trial demonstrated that supplementing the steer ration with sodium sulfate markedly improved rumen fermentation, fiber digestibility, and metabolism of amino acids, purine derivatives, and vitamins through effects on the ruminal microbiome. The facts obtained from the present trial clarified the possible mechanisms of the positive effects of sulfur on rumen fermentation and nutrient utilization.


Assuntos
Fibras na Dieta/metabolismo , Digestão , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma , Rúmen/efeitos dos fármacos , Sulfatos/metabolismo , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais/análise , Fermentação , Masculino , Plasma/metabolismo , Rúmen/microbiologia , Rúmen/fisiologia , Sulfatos/administração & dosagem
7.
RSC Adv ; 10(24): 14322-14330, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498473

RESUMO

Gas-liquid-liquid three-phase flow systems have unique advantages of controlling reagent manipulation and improving reaction performance. However, there remains a lack of insight into the dynamics and controllability of water droplet fusion assisted by gas bubbles, particularly scaling laws for use in the design and operation of complex multiphase flow processes. In the present work, a microfluidic reactor with three T-junctions was employed to sequentially generate gas bubbles and then fuse two dispersed water droplets. The formation of the dispersed phase was divided into multiple stages, and the bubble/droplet size was correlated with operating parameters. The formation of the second dispersed droplet at the third T-junction was accompanied by the fusion of the two dispersed water droplets that were formed. It revealed a two-stage process (i.e. drainage and fusion) for the two droplets to fuse while becoming mature by breaking-up with the secondary water supply stream. In addition, a droplet contact model was employed to understand the influence on the process stability and uniformity of the merged/fused droplets by varying the surfactant concentration (in oil), the viscosity of the water phase, and the flow rates of different fluids. The study provides a deeper understanding of the droplet fusion characteristics on gas-liquid-liquid three-phase flow in microreactors for a wide range of applications.

8.
Lab Chip ; 15(4): 1145-52, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25537767

RESUMO

The combination of ultrasound and microreactor is an emerging and promising area, but the report of designing high-power ultrasonic microreactor (USMR) is still limited. This work presents a robust, high-power and highly efficient USMR by directly coupling a microreactor plate with a Langevin-type transducer. The USMR is designed as a longitudinal half wavelength resonator, for which the antinode plane of the highest sound intensity is located at the microreactor. According to one dimension design theory, numerical simulation and impedance analysis, a USMR with a maximum power of 100 W and a resonance frequency of 20 kHz was built. The strong and uniform sound field in the USMR was then applied to intensify gas-liquid mass transfer of slug flow in a microfluidic channel. Non-inertial cavitation with multiple surface wave oscillation was excited on the slug bubbles, enhancing the overall mass transfer coefficient by 3.3-5.7 times.


Assuntos
Dióxido de Carbono/química , Microfluídica/instrumentação , Ultrassom , Água/química , Desenho de Equipamento , Propriedades de Superfície , Ultrassom/instrumentação
9.
Dose Response ; 10(2): 251-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22740786

RESUMO

The shape of dose response of ionizing radiation (IR) induced cancer at low dose region, either linear non-threshold or J-shaped, has been a debate for a long time. This dose response relationship can be influenced by built-in capabilities of cells that minimize the fixation of IR-mediated DNA damage as pro-carcinogenic mutations. Key capabilities include sensing of damage, activation of cell cycle checkpoint arrests that provide time needed for repair of the damage as well as apoptosis. Here we describe computational modeling of the signaling pathways that link sensing of DNA damage and checkpoint arrest activation/apoptosis to investigate how these molecular-level interactions influence the dose response relationship for IR induced cancer. The model provides qualitatively accurate descriptions of the IR-mediated activation of cell cycle checkpoints and the apoptotic pathway, and of time-course activities and dose response of relevant regulatory proteins (e.g. p53 and p21). Linking to a two-stage clonal growth cancer model, the model described here successfully captured a monotonically increasing to a J-shaped dose response curve and identified one potential mechanism leading to the J-shape: the cell cycle checkpoint arrest time saturates with the increase of the dose.

10.
Dose Response ; 11(3): 301-18, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23983661

RESUMO

The hormesis phenomena or J-shaped dose response have been accepted as a common phenomenon regardless of the involved biological model, endpoint measured and chemical class/physical stressor. This paper first introduced a mathematical dose response model based on systems biology approach. It links molecular-level cell cycle checkpoint control information to clonal growth cancer model to predict the possible shapes of the dose response curves of Ionizing Radiation (IR) induced tumor transformation frequency. J-shaped dose response curves have been captured with consideration of cell cycle checkpoint control mechanisms. The simulation results indicate the shape of the dose response curve relates to the behavior of the saddle-node points of the model in the bifurcation diagram. A simplified version of the model in previous work of the authors was used mathematically to analyze behaviors relating to the saddle-node points for the J-shaped dose response curve. It indicates that low-linear energy transfer (LET) is more likely to have a J-shaped dose response curve. This result emphasizes the significance of systems biology approach, which encourages collaboration of multidiscipline of biologists, toxicologists and mathematicians, to illustrate complex cancer-related events, and confirm the biphasic dose-response at low doses.

11.
Dose Response ; 8(4): 456-77, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21191485

RESUMO

For ionization radiation (IR) induced cancer, a linear non-threshold (LNT) model at very low doses is the default used by a number of national and international organizations and in regulatory law. This default denies any positive benefit from any level of exposure. However, experimental observations and theoretical biology have found that both linear and J-shaped IR dose-response curves can exist at those very low doses. We develop low dose J-shaped dose-response, based on systems biology, and thus justify its use regarding exposure to IR. This approach incorporates detailed, molecular and cellular descriptions of biological/toxicological mechanisms to develop a dose-response model through a set of nonlinear, differential equations describing the signaling pathways and biochemical mechanisms of cell cycle checkpoint, apoptosis, and tumor incidence due to IR. This approach yields a J-shaped dose response curve while showing where LNT behaviors are likely to occur. The results confirm the hypothesis of the J-shaped dose response curve: the main reason is that, at low-doses of IR, cells stimulate protective systems through a longer cell arrest time per unit of IR dose. We suggest that the policy implications of this approach are an increasingly correct way to deal with precautionary measures in public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA