Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(5): 1692-1706, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33554343

RESUMO

Arsenic stress causes rapid transcriptional responses in plants. However, transcriptional regulators of arsenic-induced gene expression in plants remain less well known. To date, forward genetic screens have proven limited for dissecting arsenic response mechanisms. We hypothesized that this may be due to the extensive genetic redundancy present in plant genomes. To overcome this limitation, we pursued a forward genetic screen for arsenite tolerance using a randomized library of plants expressing >2,000 artificial microRNAs (amiRNAs). This library was designed to knock-down diverse combinations of homologous gene family members within sub-clades of transcription factor and transporter gene families. We identified six transformant lines showing an altered response to arsenite in root growth assays. Further characterization of an amiRNA line targeting closely homologous CBF and ERF transcription factors show that the CBF1,2 and 3 transcription factors negatively regulate arsenite sensitivity. Furthermore, the ERF34 and ERF35 transcription factors are required for cadmium resistance. Generation of CRISPR lines, higher-order T-DNA mutants and gene expression analyses, further support our findings. These ERF transcription factors differentially regulate arsenite sensitivity and cadmium tolerance.


Assuntos
Arabidopsis/metabolismo , Arsenitos/metabolismo , Cádmio/metabolismo , Testes Genéticos , MicroRNAs/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
2.
J Exp Bot ; 71(18): 5348-5364, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32449922

RESUMO

Root meristem activity is the most critical process influencing root development. Although several factors that regulate meristem activity have been identified in rice, studies on the enhancement of meristem activity in roots are limited. We identified a T-DNA activation tagging line of a zinc-finger homeobox gene, OsZHD2, which has longer seminal and lateral roots due to increased meristem activity. The phenotypes were confirmed in transgenic plants overexpressing OsZHD2. In addition, the overexpressing plants showed enhanced grain yield under low nutrient and paddy field conditions. OsZHD2 was preferentially expressed in the shoot apical meristem and root tips. Transcriptome analyses and quantitative real-time PCR experiments on roots from the activation tagging line and the wild type showed that genes for ethylene biosynthesis were up-regulated in the activation line. Ethylene levels were higher in the activation lines compared with the wild type. ChIP assay results suggested that OsZHD2 induces ethylene biosynthesis by controlling ACS5 directly. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), an ethylene precursor, induced the expression of the DR5 reporter at the root tip and stele, whereas treatment with an ethylene biosynthesis inhibitor, AVG (aminoethoxyvinylglycine), decreased that expression in both the wild type and the OsZHD2 overexpression line. These observations suggest that OsZHD2 enhances root meristem activity by influencing ethylene biosynthesis and, in turn, auxin.


Assuntos
Meristema , Oryza , Etilenos , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Ácidos Indolacéticos , Meristema/genética , Oryza/genética , Raízes de Plantas/genética , Fatores de Transcrição/genética
4.
Plant Cell Physiol ; 60(1): 29-37, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169882

RESUMO

The plant pathogen Agrobacterium tumefaciens infects plants and introduces the transferred-DNA (T-DNA) region of the Ti-plasmid into nuclear DNA of host plants to induce the formation of tumors (crown galls). The T-DNA region carries iaaM and iaaH genes for synthesis of the plant hormone auxin, indole-3-acetic acid (IAA). It has been demonstrated that the iaaM gene encodes a tryptophan 2-monooxygenase which catalyzes the conversion of tryptophan to indole-3-acetamide (IAM), and the iaaH gene encodes an amidase for subsequent conversion of IAM to IAA. In this article, we demonstrate that A. tumefaciens enhances the production of both IAA and phenylacetic acid (PAA), another auxin which does not show polar transport characteristics, in the formation of crown galls. Using liquid chromatography-tandem mass spectroscopy, we found that the endogenous levels of phenylacetamide (PAM) and PAA metabolites, as well as IAM and IAA metabolites, are remarkably increased in crown galls formed on the stem of tomato plants, implying that two distinct auxins are simultaneously synthesized via the IaaM-IaaH pathway. Moreover, we found that the induction of the iaaM gene dramatically elevated the levels of PAM, PAA and its metabolites, along with IAM, IAA and its metabolites, in Arabidopsis and barley. From these results, we conclude that A. tumefaciens enhances biosynthesis of two distinct auxins in the formation of crown galls.


Assuntos
Agrobacterium tumefaciens/metabolismo , Vias Biossintéticas , Ácidos Indolacéticos/metabolismo , Tumores de Planta/microbiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Hordeum/microbiologia , Ácidos Indolacéticos/química , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Metaboloma , Fenilacetatos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/metabolismo
5.
Hortic Res ; 5: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531752

RESUMO

Developing CRISPR/Cas9-mediated non-transgenic mutants in asexually propagated perennial crop plants is challenging but highly desirable. Here, we report a highly useful method using an Agrobacterium-mediated transient CRISPR/Cas9 gene expression system to create non-transgenic mutant plants without the need for sexual segregation. We have also developed a rapid, cost-effective, and high-throughput mutant screening protocol based on Illumina sequencing followed by high-resolution melting (HRM) analysis. Using tetraploid tobacco as a model species and the phytoene desaturase (PDS) gene as a target, we successfully created and expediently identified mutant plants, which were verified as tetra-allelic mutants. We produced pds mutant shoots at a rate of 47.5% from tobacco leaf explants, without the use of antibiotic selection. Among these pds plants, 17.2% were confirmed to be non-transgenic, for an overall non-transgenic mutation rate of 8.2%. Our method is reliable and effective in creating non-transgenic mutant plants without the need to segregate out transgenes through sexual reproduction. This method should be applicable to many economically important, heterozygous, perennial crop species that are more difficult to regenerate.

6.
Nat Chem Biol ; 9(4): 244-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23377040

RESUMO

We identify an Arabidopsis pyridoxal-phosphate-dependent aminotransferase, VAS1, whose loss-of-function simultaneously increases amounts of the phytohormone auxin and the ethylene precursor 1-aminocyclopropane-1-carboxylate. VAS1 uses the ethylene biosynthetic intermediate methionine as an amino donor and the auxin biosynthetic intermediate indole-3-pyruvic acid as an amino acceptor to produce L-tryptophan and 2-oxo-4-methylthiobutyric acid. Our data indicate that VAS1 serves key roles in coordinating the amounts of these two vital hormones.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/biossíntese , Ácidos Indolacéticos/metabolismo , Transaminases/metabolismo , Sequência de Aminoácidos , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Indóis , Metionina/análogos & derivados , Metionina/biossíntese , Metionina/metabolismo , Dados de Sequência Molecular , Mutação , Fosfato de Piridoxal/metabolismo , Transaminases/genética , Triptofano/biossíntese
7.
Plant Physiol ; 151(2): 590-602, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19710232

RESUMO

The ATP-binding cassette transporters of mitochondria (ATMs) are highly conserved proteins, but their function in plants is poorly defined. Arabidopsis (Arabidopsis thaliana) has three ATM genes, namely ATM1, ATM2, and ATM3. Using a collection of insertional mutants, we show that only ATM3 has an important function for plant growth. Additional atm3 alleles were identified among sirtinol-resistant lines, correlating with decreased activities of aldehyde oxidases, cytosolic enzymes that convert sirtinol into an auxin analog, and depend on iron-sulfur (Fe-S) and molybdenum cofactor (Moco) as prosthetic groups. In the sirtinol-resistant atm3-3 allele, the highly conserved arginine-612 is replaced by a lysine residue, the negative effect of which could be mimicked in the yeast Atm1p ortholog. Arabidopsis atm3 mutants displayed defects in root growth, chlorophyll content, and seedling establishment. Analyses of selected metal enzymes showed that the activity of cytosolic aconitase (Fe-S) was strongly decreased across the range of atm3 alleles, whereas mitochondrial and plastid Fe-S enzymes were unaffected. Nitrate reductase activity (Moco, heme) was decreased by 50% in the strong atm3 alleles, but catalase activity (heme) was similar to that of the wild type. Strikingly, in contrast to mutants in the yeast and mammalian orthologs, Arabidopsis atm3 mutants did not display a dramatic iron homeostasis defect and did not accumulate iron in mitochondria. Our data suggest that Arabidopsis ATM3 may transport (1) at least two distinct compounds or (2) a single compound required for both Fe-S and Moco assembly machineries in the cytosol, but not iron.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Alelos , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Citosol/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Mutação/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Substituição de Aminoácidos/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Clorofila/metabolismo , Coenzimas/metabolismo , Sequência Conservada , Citosol/enzimologia , Fluorescência , Homeostase , Ferro/metabolismo , Metaloproteínas/metabolismo , Mitocôndrias/enzimologia , Cofatores de Molibdênio , Fenótipo , Plastídeos/enzimologia , Pteridinas/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(13): 5430-5, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19279202

RESUMO

Auxins are hormones that regulate many aspects of plant growth and development. The main plant auxin is indole-3-acetic acid (IAA), whose biosynthetic pathway is not fully understood. Indole-3-acetaldoxime (IAOx) has been proposed to be a key intermediate in the synthesis of IAA and several other indolic compounds. Genetic studies of IAA biosynthesis in Arabidopsis have suggested that 2 distinct pathways involving the CYP79B or YUCCA (YUC) genes may contribute to IAOx synthesis and that several pathways are also involved in the conversion of IAOx to IAA. Here we report the biochemical dissection of IAOx biosynthesis and metabolism in plants by analyzing IAA biosynthesis intermediates. We demonstrated that the majority of IAOx is produced by CYP79B genes in Arabidopsis because IAOx production was abolished in CYP79B-deficient mutants. IAOx was not detected from rice, maize, and tobacco, which do not have apparent CYP79B orthologues. IAOx levels were not significantly altered in the yuc1 yuc2 yuc4 yuc6 quadruple mutants, suggesting that the YUC gene family probably does not contribute to IAOx synthesis. We determined the pathway for conversion of IAOx to IAA by identifying 2 likely intermediates, indole-3-acetamide (IAM) and indole-3-acetonitrile (IAN), in Arabidopsis. When (13)C(6)-labeled IAOx was fed to CYP79B-deficient mutants, (13)C(6) atoms were efficiently incorporated to IAM, IAN, and IAA. This biochemical evidence indicates that IAOx-dependent IAA biosynthesis, which involves IAM and IAN as intermediates, is not a common but a species-specific pathway in plants; thus IAA biosynthesis may differ among plant species.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Oximas/metabolismo , Redes e Vias Metabólicas
9.
J Biol Chem ; 283(15): 9642-50, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18258600

RESUMO

The molybdenum cofactor sulfurase ABA3 from Arabidopsis thaliana is needed for post-translational activation of aldehyde oxidase and xanthine dehydrogenase by transferring a sulfur atom to the desulfo-molybdenum cofactor of these enzymes. ABA3 is a two-domain protein consisting of an NH(2)-terminal NifS-like cysteine desulfurase domain and a C-terminal domain of yet undescribed function. The NH(2)-terminal domain of ABA3 decomposes l-cysteine to yield elemental sulfur, which subsequently is bound as persulfide to a conserved protein cysteinyl residue within this domain. In vivo, activation of aldehyde oxidase and xanthine dehydrogenase also depends on the function of the C-terminal domain, as can be concluded from the A. thaliana aba3/sir3-3 mutant. sir3-3 plants are strongly reduced in aldehyde oxidase and xanthine dehydrogenase activities due to a substitution of arginine 723 by a lysine within the C-terminal domain of the ABA3 protein. Here we present first evidence for the function of the C-terminal domain and show that molybdenum cofactor is bound to this domain with high affinity. Furthermore, cyanide-treated ABA3 C terminus was shown to release thiocyanate, indicating that the molybdenum cofactor bound to the C-terminal domain is present in the sulfurated form. Co-incubation of partially active aldehyde oxidase and xanthine dehydrogenase with ABA3 C terminus carrying sulfurated molybdenum cofactor resulted in stimulation of aldehyde oxidase and xanthine dehydrogenase activity. The data of this work suggest that the C-terminal domain of ABA3 might act as a scaffold protein where prebound desulfo-molybdenum cofactor is converted into sulfurated cofactor prior to activation of aldehyde oxidase and xanthine dehydrogenase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Coenzimas/metabolismo , Molibdênio/metabolismo , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Ativação Enzimática/fisiologia , Mutação , Estrutura Terciária de Proteína/fisiologia , Sulfetos/metabolismo , Sulfurtransferases/genética , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
10.
Plant Cell ; 19(11): 3655-68, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18055605

RESUMO

How plant organs grow to reach their final size is an important but largely unanswered question. Here, we describe an Arabidopsis thaliana mutant, brassinosteroid-insensitive4 (bin4), in which the growth of various organs is dramatically reduced. Small organ size in bin4 is primarily caused by reduced cell expansion associated with defects in increasing ploidy by endoreduplication. Raising nuclear DNA content in bin4 by colchicine-induced polyploidization partially rescues the cell and organ size phenotype, indicating that BIN4 is directly and specifically required for endoreduplication rather than for subsequent cell expansion. BIN4 encodes a plant-specific, DNA binding protein that acts as a component of the plant DNA topoisomerase VI complex. Loss of BIN4 triggers an ATM- and ATR-dependent DNA damage response in postmitotic cells, and this response coincides with the upregulation of the cyclin B1;1 gene in the same cell types, suggesting a functional link between DNA damage response and endocycle control.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , DNA Topoisomerases Tipo I/metabolismo , Ploidias , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas Mutadas de Ataxia Telangiectasia , Brassinosteroides , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Colestanóis/metabolismo , Colchicina/farmacologia , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Fase G2/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Mitose/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Esteroides Heterocíclicos/metabolismo , Proteínas Supressoras de Tumor/metabolismo
11.
Plant Physiol ; 140(3): 899-908, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16461383

RESUMO

Although auxin response factors (ARFs) are the first well-characterized proteins that bind to the auxin response elements, elucidation of the roles of each ARF gene in auxin responses and plant development has been challenging. Here we show that ARF19 and ARF7 not only participate in auxin signaling, but also play a critical role in ethylene responses in Arabidopsis (Arabidopsis thaliana) roots, indicating that the ARFs serve as a cross talk point between the two hormones. Both arf19 and arf7 mutants isolated from our forward genetic screens are auxin resistant and the arf19arf7 double mutant had stronger auxin resistance than the single mutants and displayed phenotypes not seen in the single mutants. Furthermore, we show that a genomic fragment of ARF19 not only complements arf19, but also rescues arf7. We conclude that ARF19 complements ARF7 at the protein level and that the ARF7 target sequences are also recognized by ARF19. Therefore, it is the differences in expression level/pattern and not the differences in protein sequences between the two ARFs that determines the relative contribution of the two ARFs in auxin signaling and plant development. In addition to being auxin resistant, arf19 has also ethylene-insensitive roots and ARF19 expression is induced by ethylene treatment. This work provides a sensitive genetic screen for uncovering auxin-resistant mutants including the described arf mutants. This study also provides a likely mechanism for coordination and integration of hormonal signals to regulate plant growth and development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Etilenos/farmacologia , Ácidos Indolacéticos/farmacologia , Transdução de Sinais/fisiologia , Transativadores/fisiologia , Alelos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Dados de Sequência Molecular , Mutação , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Fenótipo , Fototropismo/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Plântula/anatomia & histologia , Plântula/genética , Plântula/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
12.
Trends Biochem Sci ; 28(11): 576-80, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14607086

RESUMO

A previously undetected domain, named CW for its conserved cysteine and tryptophan residues, appears to be a four-cysteine zinc-finger motif found exclusively in vertebrates, vertebrate-infecting parasites and higher plants. Of the twelve distinct nuclear protein families that comprise the CW domain-containing superfamily, only the microrchida (MORC) family has begun to be characterized. However, several families contain other domains suggesting a relationship between the CW domain and either chromatin methylation status or early embryonic development.


Assuntos
Parasitos/genética , Plantas/genética , Vertebrados/genética , Dedos de Zinco/genética , Sequência de Aminoácidos , Animais , Cromatina/genética , Cromatina/metabolismo , Sequência Conservada , Cisteína/química , Humanos , Dados de Sequência Molecular , Parasitos/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Triptofano/química , Vertebrados/metabolismo , Vertebrados/parasitologia
13.
Science ; 301(5636): 1107-10, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12893885

RESUMO

Auxin is a plant hormone that regulates many aspects of plant growth and development. We used a chemical genetics approach to identify SIR1, a regulator of many auxin-inducible genes. The sir1 mutant was resistant to sirtinol, a small molecule that activates many auxin-inducible genes and promotes auxin-related developmental phenotypes. SIR1 is predicted to encode a protein composed of a ubiquitin-activating enzyme E1-like domain and a Rhodanese-like domain homologous to that of prolyl isomerase. We suggest a molecular context for how the auxin signal is propagated to exert its biological effects.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Benzamidas/metabolismo , Benzamidas/farmacologia , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter , Ácidos Indolacéticos/farmacologia , Dados de Sequência Molecular , Mutação , Naftóis/metabolismo , Naftóis/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Sirtuínas/antagonistas & inibidores , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA