Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38921460

RESUMO

Epigenetic and metabolic reprogramming alterations are two important features of tumors, and their reversible, spatial, and temporal regulation is a distinctive hallmark of carcinogenesis. Epigenetics, which focuses on gene regulatory mechanisms beyond the DNA sequence, is a new entry point for tumor therapy. Moreover, metabolic reprogramming drives hepatocellular carcinoma (HCC) initiation and progression, highlighting the significance of metabolism in this disease. Exploring the inter-regulatory relationship between tumor metabolic reprogramming and epigenetic modification has become one of the hot directions in current tumor metabolism research. As viral etiologies have given way to metabolic dysfunction-associated steatotic liver disease (MASLD)-induced HCC, it is urgent that complex molecular pathways linking them and hepatocarcinogenesis be explored. However, how aberrant crosstalk between epigenetic modifications and metabolic reprogramming affects MASLD-induced HCC lacks comprehensive understanding. A better understanding of their linkages is necessary and urgent to improve HCC treatment strategies. For this reason, this review examines the interwoven landscape of molecular carcinogenesis in the context of MASLD-induced HCC, focusing on mechanisms regulating aberrant epigenetic alterations and metabolic reprogramming in the development of MASLD-induced HCC and interactions between them while also updating the current advances in metabolism and epigenetic modification-based therapeutic drugs in HCC.

2.
Mol Plant Pathol ; 25(6): e13488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924248

RESUMO

Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.


Assuntos
Nicotiana , Imunidade Vegetal , Nicotiana/microbiologia , Nicotiana/imunologia , Nicotiana/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Front Microbiol ; 15: 1341296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357345

RESUMO

Background: Tobacco mosaic virus (TMV) is one famous plant virus responsible for substantial economic losses worldwide. However, the roles of bacterial communities in response to TMV in the tobacco rhizosphere remain unclear. Methods: We explored the soil physicochemical properties and bacterial community succession of the healthy (YTH) and diseased (YTD) plants with TMV infection by 16S rRNA gene sequencing and bioinformatics analysis. Results: We found that soil pH in the YTD group was significantly lower than in the YTH group, and the soil available nutrients were substantially higher. The bacterial community analysis found that the diversity and structure significantly differed post-TMV disease onset. With TMV inoculated, the alpha diversity of the bacterial community in the YTD was markedly higher than that in the YTH group at the early stage. However, the alpha diversity in the YTD group subsequently decreased to lower than in the YTH group. The early bacterial structure of healthy plants exhibited higher susceptibility to TMV infection, whereas, in the subsequent stages, there was an enrichment of beneficial bacterial (e.g., Ramlibacter, Sphingomonas, Streptomyces, and Niastella) and enhanced energy metabolism and nucleotide metabolism in bacteria. Conclusion: The initial soil bacterial community exhibited susceptibility to TMV infection, which might contribute to strengthening resistance of Tobacco to TMV.

4.
J Agric Food Chem ; 72(3): 1571-1581, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206573

RESUMO

Chinese chestnut (Castanea mollissima BL.) is a well-known fruit tree that has been cultivated in East Asia for millennia. Leaves and buds of the plant can become seriously infested by the gall wasp Dryocosmus kuriphilus (GWDK), which results in gall formation and associated significant losses in fruit production. Herbivore-induced terpenes have been reported to play an important role in plant-herbivory interactions, and in this study, we show that upon herbivory by GWDK, four terpene-related compounds were significantly induced, while the concentrations of these four compounds in intact buds were relatively low. Among these compounds, (E)-nerolidol and (E, E)-α-farnesene have frequently been reported to be involved in plant herbivory defenses, which suggests direct and/or indirect functions in chestnut GWDK defenses. Candidate terpene synthase (TPS) genes that may account for (E)-nerolidol and (E, E)-α-farnesene terpene biosynthesis were characterized by transcriptomics and phylogenetic approaches, which revealed altered transcript levels for two TPSs: CmAFS, a TPS-g subfamily member, and CmNES/AFS, a TPS-b clade member. Both genes were dramatically upregulated in gene expression upon GWDK infestation. Furthermore, Agrobacterium tumefaciens-mediated transient overexpression in Nicotiana benthamiana showed that CmAFS catalyzed the formation of (E, E)-α-farnesene, while CmNES/AFS showed dual (E)-nerolidol and (E, E)-α-farnesene synthase activity. Biochemical assays of the recombinant CmAFS and CmNES/AFS proteins confirmed their catalytic activity in vitro, and the enzymatic products were consistent with two of the major volatile compounds released upon GWDK-infested chestnut buds. Subcellular localization demonstrated that CmAFS and CmNES/AFS were both localized in the cytoplasm, the primary compartment for sesquiterpene synthesis. In summary, we show that two novel sesquiterpene synthase genes CmAFS and CmNES/AFS are inducible by herbivory and can account for the elevated accumulation of (E, E)-α-farnesene and (E)-nerolidol upon GWDK infestation and may be implicated in chestnut defense against GWDK herbivores.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Vespas , Animais , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Óxido Nítrico Sintase , China
5.
J Affect Disord ; 348: 167-174, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154582

RESUMO

BACKGROUND AND AIMS: The comorbidity between bipolar disorder (BD) and inflammatory bowel disease (IBD) has been widely reported in observational studies. However, unclear whether this comorbidity reflects a shared genetic architecture. METHODS: Leveraging large-scale genome-wide association study (GWAS) summary statistics of BD, IBD and its subtypes, ulcerative colitis (UC) and Crohn's disease (CD), we performed a genome-wide pleiotropic analysis to estimate heritability and genetic correlation, identify pleiotropy loci/genes, and explore the shared biological pathway. Mendelian randomization (MR) studies were subsequently employed to infer whether the potential causal relationship is present. RESULTS: We found a positive significant genetic correlation between BD and IBD (rg = 0.10, P = 7.00 × 10-4), UC (rg = 0.09, P = 2.90 × 10-3), CD (rg = 0.08, P = 6.10 × 10-3). In cross-trait meta-analysis, a total of 29, 24, and 23 independent SNPs passed the threshold for significant association between BD and IBD, UC, and CD, respectively. We identified five novel pleiotropy genes including ZDHHC2, SCRN1, INPP4B, C1orf123, and BRD3 in both BD and IBD, as well as in its subtypes UC and CD. Pathway enrichment analyses revealed that those pleiotropy genes were mainly enriched in several immune-related signal transduction pathways and cerebral disease-related pathways. MR analyses provided no evidence for a causal relationship between BD and IBD. CONCLUSION: Our findings corroborated that shared genetic basis and common biological pathways may explain the comorbidity of BD and IBD. These findings further our understanding of shared genetic mechanisms underlying BD and IBD, and potentially provide points of intervention that may allow the development of new therapies for these co-occurrent disorders.


Assuntos
Transtorno Bipolar , Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Colite Ulcerativa/genética , Doença de Crohn/epidemiologia , Doença de Crohn/genética , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Análise da Randomização Mendeliana , Proteínas do Tecido Nervoso
6.
Inorg Chem ; 62(45): 18767-18778, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37905835

RESUMO

The remarkable impact of photoredox catalytic chemistries has sparked a wave of innovation, opening doors to novel biotechnologies in the realm of catalytic antitumor therapy. Yet, the quest for novel photoredox catalysts (PCs) suitable for living systems, or the enhancement of catalytic efficacy in existing biocompatible PC systems, persists as a formidable challenge. Within this context, we introduce a readily applicable metal modulation strategy that significantly augments photoredox catalysis within living cells, exemplified by a set of metalloporphyrin complexes termed M-TCPPs (M = Zn, Mn, Ni, Co, Cu). Among these complexes, Zn-TCPP emerges as an exceptional catalyst, displaying remarkable photocatalytic activity in the oxidation of nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADPH), and specific amino acids. Notably, comprehensive investigations reveal that Zn-TCPP's superior catalytic prowess primarily arises from the establishment of an efficient oxidative cycle for PC, in contrast to previously reported PCs engaged in reductive cycles. Moreover, theoretical calculations illuminate that amplified intersystem crossing rates and geometry alterations in Zn-TCPP contribute to its heightened photocatalytic performance. In vitro studies demonstrated that Zn-TCPP exhibits therapeutic potential and is found to be effective for photocatalytic antitumor therapy in both glioblastoma G98T cells and 3D multicellular spheroids. This study underscores the transformative role of "metal modulation" in advancing high-performance PCs for catalytic antitumor therapy, marking a significant stride toward the realization of this innovative therapeutic approach.


Assuntos
Metaloporfirinas , Metais , Metais/química , Metaloporfirinas/farmacologia , Oxirredução , Catálise
7.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3786-3792, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475070

RESUMO

A fluorescence endoscopic laser confocal microscope(FELCM) was used to direct the injection of sinomenine solid lipid nanoparticles(Sin-SLN) into the joint, and the in vitro effectiveness of Sin-SLN in the treatment of rheumatoid arthritis(RA) was evaluated. Sin-SLN was prepared with the emulsion evaporation-low temperature curing method. The Sin-SLN prepared under the optimal conditions showed the encapsulation efficiency of 64.79%±3.12%, the drug loading of 3.84%±0.28%, the average particle size of(215.27±4.21) nm, and the Zeta potential of(-32.67±0.84) mV. Moreover, the Sin-SLN demonstrated good stability after sto-rage for 30 days. The rabbit model of RA was established by the subcutaneous injection of ovalbumin and complete Freund's adjuvant. Five groups were designed, including a control group, a model group, a Sin(1.5 mg·kg~(-1)) group, a Sin-SLN(1.5 mg·kg~(-1)) group, and a dexamethasone(positive drug, 1.0 mg·kg~(-1), ig) group. The control group and the model group only received puncture treatment without drug injection. After drug administration, the local skin temperature and knee joint diameter were monitored every day. The knee joint diameter and the local skin temperature were lower in the drug administration groups than in the model group(P<0.05, P<0.01). FELCM recorded the morphological alterations of the cartilage of knee joint. The Sin-SLN group showed compact tissue structure and smooth surface of the cartilage. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the serum le-vels of interleukin-1(IL-1) and tumor necrosis factor-α(TNF-α). The findings revealed that the Sin-SLN group had lower IL-1 and TNF-α levels than the model group(P<0.05, P<0.01). Hematoxylin-eosin(HE) staining was employed to reveal the pathological changes of the synovial tissue, which were significantly mitigated in the Sin-SLN group. The prepared Sin-SLN had uniform particle size and high stability. Through joint injection administration, a drug reservoir was formed. Sin-SLN effectively alleviate joint swelling and cartilage damage of rabbit, down-regulated the expression of inflammatory cytokines, and inhibited the epithelial proliferation and inflammatory cell infiltration of the synovial tissue, demonstrating the efficacy in treating RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Coelhos , Fator de Necrose Tumoral alfa , Fluorescência , Artrite Reumatoide/tratamento farmacológico , Interleucina-1 , Artrite Experimental/tratamento farmacológico
8.
ISME J ; 17(7): 1089-1103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156836

RESUMO

As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp. AC19 secretes a carbohydrate-active enzyme (CAZyme) cocktail during predation on oomycetes Phytophthora. These enzymes include three specialized ß-1,3-glucanases (AcGlu13.1, -13.2 and -13.3) that act as a cooperative consortium to target ß-1,3-glucans of Phytophthora. However, the CAZymes showed no hydrolytic effects on fungal cells, even though fungi contain ß-1,3-glucans. Heterologous expression of AcGlu13.1, -13.2 or -13.3 enzymes in Myxococcus xanthus DK1622, a model myxobacterium that antagonizes but does not predate on P. sojae, conferred a cooperative and mycophagous ability that stably maintains myxobacteria populations as a mixture of engineered strains. Comparative genomic analyses suggest that these CAZymes arose from adaptive evolution among Cystobacteriaceae myxobacteria for a specific prey killing behavior, whereby the presence of Phytophthora promotes growth of myxobacterial taxa by nutrient release and consumption. Our findings demonstrate that this lethal combination of CAZymes transforms a non-predatory myxobacterium into a predator with the ability to feed on Phytophthora, and provides new insights for understanding predator-prey interactions. In summary, our work extends the repertoire of myxobacteria predatory strategies and their evolution, and suggests that these CAZymes can be engineered as a functional consortium into strains for biocontrol of Phytophothora diseases and hence crop protection.


Assuntos
Myxococcales , Myxococcus xanthus , Phytophthora , Animais , Myxococcales/genética , Comportamento Predatório , Myxococcus xanthus/genética , Glucanos , Phytophthora/genética
9.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6371-6377, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38211993

RESUMO

In this experiment, the PK/PD fitting model of Chuanxiong(Chuanxiong Rhizoma) in the treatment of rheumatoid arthritis was established in the form of acupoint combined with external application gel paste. Firstly, the rheumatoid arthritis model was induced by ovalbumin, and the articular fluid of rabbits was extracted by microdialysis. The pharmacokinetic process of Chuanxiong in rabbit articular fluid was analyzed by UPLC-MS/MS, and the pharmacokinetic model was established. The pharmacodynamic effects of Chuanxiong on inflammatory factors IL-1ß, TNF-α, and IL-6 were analyzed by enzyme-linked immunosorbent assay(ELISA). The pharmacodynamic model was established, and the PK/PD model was obtained by fitting the data of pharmacokinetics and pharmacodynamics. The results of pharmacokinetics showed that the concentration of ligustrolide A in the articular cavity by drug administration on classical acupoint Zusanli(ST 36) was higher than that by Yanglingquan(GB 34), which reflected the advantage of typical acupoint, while ligustrazine concentration was higher after administration through Yanglingquan than through Zusanli, which was different from the traditional acupoint theory. The results of pharmacodynamics showed that the drug had lag effect. The PK/PD model was constructed by fitting the data. When IL-1ß was taken as the efficacy index, the PK/PD models of Chuanxiong in typical acupoint Zusanli group, atypical acupoint Yanglingquan group, and non-acupoint group were E=115.28C_e/(3 316.72+C_e), E=108.73C_e/(2 993.47+C_e), and E=101.34C_e/(3 028.51+C_e). When TNF-α was taken as the efficacy index, the PK/PD models of Chuanxiong in typical acupoint Zusanli group, atypical acupoint Yanglingquan group, and non-acupoint group were E=68.31C_e/(3 285.16+C_e), E=59.27C_e/(2 919.86+C_e), and E=53.61C_e/(2 862.87+C_e). When IL-6 was taken as the efficacy index, the PK/PD models of Chuanxiong in typical acupoint Zusanli group, atypical acupoint Yanglingquan group, and non-acupoint group were E=59.92C_e/(3 461.17+C_e), E=58.34C_e/(2 723.51+C_e), and E=49.17C_e/(2 862.76+C_e). The parameters showed that there were significant differences in E_(max), EC_(e50) and k_(eo). The analysis of data found that the PK/PD fitting effect of Zusanli, a typical acupoint, was the best, which proved that it was still the best site for drug administration. To sum up, it shows that there may be bidirectional selectivity between drugs and acupoints.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Animais , Coelhos , Cromatografia Líquida , Interleucina-6 , Espectrometria de Massas em Tandem , Pontos de Acupuntura , Artrite Reumatoide/tratamento farmacológico
10.
Plant Dis ; 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306441

RESUMO

Pecan (Carya illinoinensis) is a world-famous nut tree that is widely cultivated in China, especially in Jiangsu Province (Zhang et al. 2015). In April 2022, cankers on trunks were recorded in pecan (cv. Pawnee) fields located in Taizhou (32°27'58″ N, 120°0'49″ E), Jiangsu. Cankers on the trunks resulted in wilt of the plants. Usually, the color of infected bark on the trunk became darker than the healty bark. When the outer bark was peeled away, the inner tissues were water-soaked, often with reddish streaks. In the surveyed orchards, disease incidence ranged from 10 to 20% among young saplings (about 200 three-year-old trees). While no fungal mycelium or spores were found in the diseased areas by microscope, bacterial colonies were isolated by surface-sterilizing small fragments (25 mm2) of symptomatic tissue in 0.5% NaOCl, rinsing the sections twice in sterilized water, and then streaking them on Luria-Bertani (LB) plates. More than 20 bacterial isolates were obtained and all isolates induced a hypersensitive response on Nicotiana tabacum. All isolates were fluorescent on King's medium B, and were gram-negative based on lysis by KOH. Isolates were positive for levan formation, negative for oxidase and arginine dihydrolase, and did not cause soft rot on potato slices. Based on above information, the isolates thus belonged to Lelliot's LOPAT group 1, P. syringae (Lelliott and Stead 1988). The 16S rRNA sequences of five representative isolates (accession numbers OP175939-OP175943) were amplified by PCR, sequenced, and compared with the NCBI GenBank database (Weisburg et al. 1991; Sarkar and Guttman 2004), finding a 99.92% genetic similarity with a previously reported 16S rRNA sequence of a Pseudomonas syringae pv. syringae (Pss) isolate (accession numbers NW389777). Additional housekeeping genes gap1(accession numbers OP186937-OP186941), rpoD (accession numbers OP186952-OP186956), gyrB (accession numbers OP186947-OP186951), and gltA (accession numbers OP186942-OP186946) were PCR-amplified and sequenced as reported by Hwang et al. (2005), followed by multilocus sequence typing analysis (MLSA). Molecular phylogenetic trees (MEGA vesion 6.0, maximum likelihood with Jukes-Cantor model, 1,000 bootstraps) were generated based on each of these five DNA regions and revealed that all five isolates were clustered together with the strains in P. syringae genomospecies 2, and grouped these isolates with Pss in the PAMDB database (Hwang et al. 2005). As a result, these isolates were identified as Pss. Pathogenicity on pecan (cv. Pawnee) was confirmed by cutting the trunks of two-year-old pecan trees with sterilized blades dipped in cell suspensions containing 107 CFU/ml of each isolate. Plants inoculated in a similar manner with sterile water served as negative controls. The inoculated plants were incubated in a greenhouse maintained at 25°C and 80% relative humidity. After 7 to 8 days, all inoculated plants showed the symptoms of necrosis previously described for the original field plants, while the control plants did not show symptoms. The bacteria reisolated from the inoculated plants were identified as Pss using the LOPAT tests. These results and the sequence analysis of the 16S rRNA and four housekeeping genes described above, fulfilled Koch's postulates. No target bacteria were isolated from the control plants. To our knowledge, this is the first report of Pseudomonas syringae pv. syringaecausing bacterial canker of pecan worldwide. The identification of this pathogen will allow the study of strategies for managing the disease. References: Hwang, M. S., et al. 2005. Applied and Environmental Microbiology, 71:5182-5191. Lelliott, R. A., and Stead, D. E. 1988. Blackwell Scientific, Sussex, UK. Sarkar, S. F., and Guttman, D. S. 2004. Applied and Environmental Microbiology, 70:1999. Weisburg, W. G., et al. 1991. Journal of Bacteriology, 173: 697. Zhang, R., et al. 2015. Scientia Horticulturae, 197: 719-727. The author(s) declare no conflict of interest. Keywords: Carya illinoinensis, Pseudomonas syringae, Canker, Identification †Indicates the corresponding author.Y. Q. Zhao; zhaoyuqiang123@126.com.

11.
Front Plant Sci ; 13: 874434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498685

RESUMO

Chinese chestnut is a popular fruit tree with a high nutritional value of its nuts, which can suffer from infestation by the chestnut gall wasp Dryocosmus kuriphilus (GWDK) that results in gall formation and resultant loss of production and profitability. The physiological and molecular mechanisms of GWDK resistance found in certain genotypes currently remains elusive. To gain new insights into this phenomenon, a series of RNA-Seq integrated with metabolomic profiling experiments were executed to investigate the chemical and transcriptional differences in response to GWDK infestation in two contrasting chestnut varieties grown in China (the susceptible "HongLi," HL and the partially resistant "Shuhe_Wuyingli," SW). Three time points were selected for comparison: The initiation stage (A), growth stage (B), and maturation stage (C). Results showed that concentrations of hydrogen peroxide (H2O2) and the activities of peroxidase (POD) and superoxide dismutase (SOD) enzyme were elevated in the resistant SW leaves compared with those in HL leaves at all three developmental stages, while catalase (CAT) and polyphenol oxidase (PPO) activities were mostly higher in HL leaves. RNA-Seq transcriptomic analyses of HL and SW leaves revealed that various metabolic pathways involved in GWDK stress responses, such as plant hormone signal transduction, MAPK signaling, and the peroxisome pathway, were enriched in the contrasting samples. Moreover, the weighted gene co-expression network analysis (WGCNA) of differentially expressed genes in the POD pathway combined with transcription factors (TFs) indicated that the expression of TF members of bHLH, WRKY, NAC, and MYB family positively correlated with POD pathway gene expression. The TFs CmbHLH130 (EVM0032437), CmWRKY31 (EVM0017000), CmNAC50 (EVM0000033), and CmPHL12 (EVM0007330) were identified as putative TFs that participate in the regulation of insect-induced plant enzyme activities in chestnut, which may contribute to GWDK resistance in SW. Expression levels of 8 random differentially expressed genes (DEGs) were furthermore selected to perform quantitative reverse transcription PCR (qRT-PCR) to validate the accuracy of the RNA-Seq-derived expression patterns. This study guides the functional analyses of further candidate genes and mechanisms important for GWDK resistance in chestnuts in the future as well as can help in identifying the master transcriptional regulators and important enzyme steps that support major insect defense pathways in chestnut.

12.
Chem Commun (Camb) ; 57(64): 7902-7905, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34286752

RESUMO

A cocktail [1 + 2] dual-fluorescent probe system was developed to realize the real-time visualization of dynamic iron state changes between Fe2+ and Fe3+ at the cellular level and in multicellular organisms, providing insights into the effect of DMT1 and ferroportin on iron regulation.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Corantes Fluorescentes/química , Ferro/análise , Proteínas de Transporte de Cátions/química , Corantes Fluorescentes/metabolismo , Células Hep G2 , Humanos , Ferro/metabolismo , Estrutura Molecular
13.
PLoS Genet ; 17(3): e1009383, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33657091

RESUMO

As both host and pathogen require iron for survival, iron is an important regulator of host-pathogen interactions. However, the molecular mechanism by which how the availability of iron modulates host innate immunity against bacterial infections remains largely unknown. Using the metazoan Caenorhabditis elegans as a model, we demonstrate that infection with a pathogenic bacterium Salmonella enterica serovar Typhimurium induces autophagy by inactivating the target of rapamycin (TOR). Although the transcripts of ftn-1 and ftn-2 encoding two H-ferritin subunits are upregulated upon S. Typhimurium infection, the ferritin protein is kept at a low level due to its degradation mediated by autophagy. Autophagy, but not ferritin, is required for defense against S. Typhimurium infection under normal circumstances. Increased abundance of iron suppresses autophagy by activating TOR, leading to an increase in the ferritin protein level. Iron sequestration, but not autophagy, becomes pivotal to protect the host from S. Typhimurium infection in the presence of exogenous iron. Our results show that TOR acts as a regulator linking iron availability with host defense against bacterial infection.


Assuntos
Infecções Bacterianas/metabolismo , Sinais (Psicologia) , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Ferro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia , Infecções Bacterianas/etiologia , Caenorhabditis elegans , Resistência à Doença/genética , Suscetibilidade a Doenças , Ferritinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Modelos Biológicos , Salmonella typhimurium/imunologia
14.
ACS Appl Bio Mater ; 4(7): 5686-5694, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006742

RESUMO

Urgency in finding a suitable therapy in tumor hypoxia strives to develop hypoxia-targeted activatable theranostic. A strategic theranostic prodrug (Azo-M) has been synthesized. Its azo-linker scission under the hypoxia condition has released an near-infrared (NIR)-reporter to determine the extent of chemotherapeutic (melphalan analogue) activation. Under an artificial hypoxia condition, a large shift from 520 to 590 nm in UV absorption was observed in Azo-M. Alongside, the emission maxima had appeared at 625 nm under the said condition. The Azo-M post-incubated HeLa cells have shown upregulation of various apoptotic factors under oxygen deprivation (3%) condition. Azo-M has shown antiproliferative activity under hypoxia conditions in various cancer cells. An ex-vivo biodistribution study indicated that theranostic Azo-M only activated in tumor tissue and to some extent in the liver. The therapeutic activity study in vivo indicated that Azo-M effectively reduced the tumor size and volume (about 2-fold) without the change of bodyweight of mice. The theranostic Azo-M can be a cornerstone to suppress tumor hypoxia and tracking its extent of suppression.


Assuntos
Hipóxia , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Distribuição Tecidual
15.
Front Microbiol ; 12: 783862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087487

RESUMO

Bacterial fruit blotch, caused by seed-borne pathogen Acidovorax citrulli, poses a serious threat to the production of cucurbits globally. Although the disease can cause substantial economic losses, limited information is available about the molecular mechanisms of virulence. This study identified that, a random transposon insertion mutant impaired in the ability to elicit a hypersensitive response on tobacco. The disrupted gene in this mutant was determined to be Aave_0638, which is predicted to encode a YggS family pyridoxal phosphate-dependent enzyme. YggS is a highly conserved protein among multiple organisms, and is responsible for maintaining the homeostasis of pyridoxal 5'-phosphate and amino acids in cells. yggS deletion mutant of A. citrulli strain XjL12 displayed attenuated virulence, delayed hypersensitive response, less tolerance to H2O2 and pyridoxine, increased sensitivity to antibiotic ß-chloro-D-alanine, and reduced swimming. In addition, RNA-Seq analysis demonstrated that yggS was involved in regulating the expression of certain pathogenicity-associated genes related to secretion, motility, quorum sensing and oxidative stress response. Importantly, YggS significantly affected type III secretion system and its effectors in vitro. Collectively, our results suggest that YggS is indispensable for A.citrulli virulence and expands the role of YggS in the biological processes.

16.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781446

RESUMO

Chinese chestnut (Castanea mollissima Blume) can be infested by Dryocosmus kuriphilus Yasumatsu, resulting in gall formation and yield losses. Research on the control of gall wasps using genomics approaches is rarely reported. We used RNA-seq to investigate the dynamic changes in the genes of a chestnut species (C. mollissima B.) during four gall-formation stages caused by D. kuriphilus. A total of 21,306 genes were annotated by BLAST in databases. Transcriptome comparison between different gall-formation stages revealed many genes that were differentially expressed compared to the control. Among these, 2410, 7373, 6294, and 9412 genes were differentially expressed in four gall-formation stages: initiation stage (A), early growth stage (B), late growth stage (C), and maturation stage (D), respectively. Annotation analysis indicated that many metabolic processes (e.g., phenylpropanoid biosynthesis, secondary metabolism, plant⁻pathogen interaction) were affected. Interesting genes encoding putative components of signal transduction, stress response, and transcription factors were also differentially regulated. These genes might play important roles in response to D. kuriphilus gall formation. These new data on the mechanism by which D. kuriphilus infests chestnuts could help improve chestnut resistance.


Assuntos
Fagaceae/genética , Fagaceae/parasitologia , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Vespas/fisiologia , Animais , Regulação da Expressão Gênica de Plantas , Oxirredução , Folhas de Planta/parasitologia , Tumores de Planta/parasitologia , Reprodutibilidade dos Testes , Metabolismo Secundário/genética , Transcrição Gênica
17.
Wei Sheng Wu Xue Bao ; 51(9): 1185-93, 2011 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-22126073

RESUMO

UNLABELLED: Acidovorax citrulli (Ac) is an important bacterium that occurs in watermelon, melon and other cucurbits. It mainly damages watermelon and melon, and can cause leaf blight, fruit rot, and even mortality. OBJECTIVE: To verify the relationship between defects in the synthesis of histidine and the pathogenicity of Ac. METHODS: We generated a transposon (Tn5) mutant library on the background of strain xjl12 of Ac. Then we used subclone technology to identify the gene. RESULTS: The mutant could not elicit the hypersensitive response (HR) in nonhost tobacco, and its virulence was reduced. It is impaired in hisC, which encodes the protein histidinolphosphate aminotransferase. The other three genes (hisA, hisB and hisD) involved in the process of histidine synthesis were also studied. These mutants could not elicit the hypersensitive response (HR) in nonhost tobacco; their virulence was reduced significantly and disease symptoms caused by mutants were delayed for 48 hours when compared to the wild type strain. By adding exogenous histidine, pathogenicity of the mutants was restored. CONCLUSION: The change of the characteristics of the mutants was directly related to the synthesis of histidine.


Assuntos
Comamonadaceae/patogenicidade , Histidina/biossíntese , Comamonadaceae/enzimologia , Comamonadaceae/genética , Redes e Vias Metabólicas/genética , Mutação/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Transaminases/genética , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA