Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 17(1): 9, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402237

RESUMO

BACKGROUND: Emerging evidences suggest that aberrant metabolites contributes to the immunosuppressive microenvironment that leads to cancer immune evasion. Among tumor immunosuppressive cells, myeloid-derived suppressor cells (MDSCs) are pathologically activated and extremely immunosuppressive, which are closely associated with poor clinical outcomes of cancer patients. However, the correlation between MDSCs mediated immunosuppression and particular cancer metabolism remained elusive. METHODS: Spontaneous lung adenocarcinoma and subcutaneous mouse tumor models, gas chromatography-mass spectrometry (GC-MS) and immunofluorescence assay of patient-derived lung adenocarcinoma tissues, and flow cytometry, RNA sequencing and Western blotting of immune cells, were utilized. RESULTS: Metabolite profiling revealed a significant accumulation of acetic acids in tumor tissues from both patients and mouse model, which contribute to immune suppression and cancer progression significantly through free fatty acid receptor 2 (FFAR2). Furthermore, FFAR2 is highly expressed in the myeloid-derived suppressor cells (MDSCs) from the tumor of lung adenocarcinoma (LUAD) patients which is greatly associated with poor prognosis. Surprisingly, whole or myeloid Ffar2 gene deletion markedly inhibited urethane-induced lung carcinogenesis and syngeneic tumor growth with reduced MDSCs and increased CD8+ T cell infiltration. Mechanistically, FFAR2 deficiency in MDSCs significantly reduced the expression of Arg1 through Gαq/Calcium/PPAR-γ axis, which eliminated T cell dysfunction through relieving L-Arginine consumption in tumor microenvironment. Therefore, replenishment of L-Arginine or inhibition to PPAR-γ restored acetic acids/FFAR2 mediated suppression to T cells significantly. Finally, FFAR2 inhibition overcame resistance to immune checkpoint blockade through enhancing the recruitment and cytotoxicity of tumor-infiltrating T cells. CONCLUSION: Altogether, our results demonstrate that the acetic acids/FFAR2 axis enhances MDSCs mediated immunosuppression through Gαq/calcium/PPAR-γ/Arg1 signaling pathway, thus contributing to cancer progression. Therefore, FFAR2 may serve as a potential new target to eliminate pathologically activated MDSCs and reverse immunosuppressive tumor microenvironment, which has great potential in improving clinical outcomes of cancer immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Células Supressoras Mieloides , Neoplasias , Humanos , Camundongos , Animais , Cálcio/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Arginina/metabolismo , Acetatos/metabolismo , Microambiente Tumoral
2.
Sci China Life Sci ; 65(5): 953-968, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34480694

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the joints and is associated with excessive immune cell infiltration. However, the complex interactions between the immune cell populations in the RA synovium remain unknown. Here, we demonstrate that inflammatory macrophages in the synovium exacerbate neutrophil-driven joint damage in RA through ADP/P2Y1 signaling. We show that extracellular ADP (eADP) and its receptors are obviously increased in synovial tissues of RA patients as well as collagen-induced arthritis (CIA) mice, and eADP enhances neutrophil infiltration into joints through macrophages producing the chemokine CXCL2, aggravating disease development. Accordingly, the arthritis mouse model had more neutrophils in inflamed joints following ADP injection, whereas P2Y1 deficiency and pharmacologic inhibition restored arthritis severity to basal levels, suggesting a dominant role of ADP/P2Y1 signaling in RA pathology. Moreover, cellular activity of ADP/P2Y1-mediated CXCL2 production was dependent on the Gαq/Ca2+-NF-κB/NFAT pathway in macrophages. Overall, this study reveals a non-redundant role of eADP as a trigger in the pathogenesis of RA through neutrophil recruitment and disrupted tissue homeostasis and function.


Assuntos
Artrite Experimental , Artrite Reumatoide , Difosfato de Adenosina/metabolismo , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Humanos , Macrófagos , Camundongos , Neutrófilos/metabolismo
3.
Eur J Med Chem ; 183: 111741, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605873

RESUMO

Tumor-associated macrophages (TAMs) are one of the prominent components of the tumor microenvironment (TME). The polarization peculiarity of TAMs drives them to infiltrate and active with states between M1 (anti-tumor) and M2 (pro-tumor) phenotypes in cancers. Exploiting small molecular drugs through targeting TAMs to repolarize them into an antitumor phenotype is considered as a novel strategy for cancer treatments in recent years. For discovering novel compounds that target TAMs, a series of ureido tetrahydrocarbazole derivatives were designed, synthesized and evaluated both in vitro and in vivo. Among them, compound 23a was found to dose-dependently repolarize TAMs from M2 to M1 both in vitro and in vivo. And more importantly, the in vivo experiments also revealed that compound 23a was capable of remarkably inhibiting tumor growth of the LLC mouse model. Moreover, the synergy of compound 23a with anti-PD-1 antibody had more superior antineoplastic effects than the exclusive use of either in vivo.


Assuntos
Antineoplásicos/síntese química , Carbazóis/síntese química , Macrófagos/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/síntese química , Animais , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carbazóis/administração & dosagem , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Sinergismo Farmacológico , Feminino , Humanos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Relação Estrutura-Atividade , Microambiente Tumoral , Ureia/administração & dosagem , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA