Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurotoxicology ; 102: 81-95, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599287

RESUMO

BACKGROUND: Propofol can increase neurotoxicity in infants but the precise mechanism is still unknown. Our previous study revealed that nuclear FMR1 interacting protein 1 (NUFIP1), a specific ribophagy receptor, can alleviate T cell apoptosis in sepsis. Yet, the effect of NUFIP1-engineered exosomes elicited from human umbilical cord blood mesenchymal stem cells (hUMSCs) on nerve injury induced by propofol remains unclear. This study intended to investigate the effect of NUFIP1-engineered exosomes on propofol-induced nerve damage in neonatal rats. METHODS: Firstly, NUFIP1-engineered exosomes were extracted from hUMSCs serum and their identification was conducted using transmission electron microscopy (TEM), Flow NanoAnalyzer, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB). Subsequently, the optimal exposure duration and concentration of propofol induced apoptosis were determined in SH-SY5Y cell line using WB. Following this, we co-cultured the NUFIP1-engineered exosomes in the knockdown group (NUFIP1-KD) and overexpression group (NUFIP1-OE) with SH-SY5Y cells and assessed their effects on the apoptosis of SH-SY5Y cells using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay, Hoechst 33258 staining, WB, and flow cytometry, respectively. Finally, NUFIP1-engineered exosomes were intraperitoneally injected into neonatal rats, and their effects on the learning and memory ability of neonatal rats were observed through the righting reflex and Morris water maze (MWM) test. Hippocampi were extracted from different groups for hematoxylin-eosin (HE) staining, immunohistochemistry, immunofluorescence, and WB to observe their effects on apoptosis in neonatal rats. RESULTS: TEM, Flow NanoAnalyzer, qRT-PCR, and WB analyses confirmed that the exosomes extracted from hUMSCs serum exhibited the expected morphology, diameter, surface markers, and expression of target genes. This confirmed the successful construction of NUFIP1-KD and NUFIP1-OE-engineered exosomes. Optimal exposure duration and concentration of propofol were determined to be 24 hours and 100 µg/ml, respectively. Co-culture of NUFIP1 engineered exosomes and SH-SY5Y cells resulted in significant up-regulation of pro-apoptotic proteins Bax and c-Caspase-3 in the KD group, while anti-apoptotic protein Bcl-2 was significantly decreased. The OE group showed the opposite trend. TUNEL apoptosis assay, Hoechst 33258 staining, and flow cytometry yielded consistent results. Animal experiments demonstrated that intraperitoneal injection of NUFIP1-KD engineered exosomes prolonged the righting reflex recovery time of newborn rats, and MWM tests revealed a significant diminution in the time and number of newborn rats entering the platform. HE staining, immunohistochemistry, immunofluorescence, and WB results also indicated a significant enhancement in apoptosis in this group. Conversely, the experimental results of neonatal rats in the OE group revealed a certain degree of anti-apoptotic effect. CONCLUSIONS: NUFIP1-engineered exosomes from hUMSCs have the potential to regulate nerve cell apoptosis and mitigate neurological injury induced by propofol in neonatal rats. Targeting NUFIP1 may hold great significance in ameliorating propofol-induced nerve injury.


Assuntos
Animais Recém-Nascidos , Apoptose , Exossomos , Células-Tronco Mesenquimais , Propofol , Ratos Sprague-Dawley , Animais , Propofol/toxicidade , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ratos , Linhagem Celular Tumoral , Sangue Fetal
2.
ACS Appl Mater Interfaces ; 15(9): 12041-12051, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36811457

RESUMO

The design of a highly effective isopropanol gas sensor with high response and trace detection capability is extremely important for environmental surveillance and human health. Here, novel flower-like PtOx@ZnO/In2O3 hollow microspheres were prepared by a three-step approach. The hollow structure was composed of an In2O3 shell inside and layered ZnO/In2O3 nanosheets outside with PtOx nanoparticles (NPs) on the surface. Meanwhile, the gas sensing performances of the ZnO/In2O3 composite with different Zn/In ratios and PtOx@ZnO/In2O3 composites were evaluated and compared systematically. The measurement results indicated that the ratio of Zn/In affected the sensing performance and the ZnIn2 sensor presented a higher response, which was then modified with PtOx NPs to further enhance its sensing property. The Pt@ZnIn2 sensor exhibited outstanding isopropanol detection performance with ultrahigh response values under 22 and 95% relative humidity (RH). In addition, it also showed a rapid response/recovery speed, good linearity, and low theoretical limit of detection (LOD) regardless of being under a relatively dry or ultrahumid atmosphere. The enhancement of isopropanol sensing properties might be ascribed to the unique structure of PtOx@ZnO/In2O3, heterojunctions between the components, and catalytic effect of Pt NPs.

3.
J Nanosci Nanotechnol ; 20(10): 6458-6462, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32384998

RESUMO

Black phosphorus quantum dots (BPQDs), a type of nanoscale black phosphorus (BP), have fantastic application prospects in various fields. However, the premise of the application of BPQDs depends on its effective preparation. At present, most of preparation processes of BPQDs involve in organic solvents which may be harmful to humans and the environment. Furthermore, some chemical impurities may inevitably be introduced into the final product. In addition, all the preparation processes need to be carried out under an inert gas due to the instability of BPQDs, which makes the reaction conditions more harsh and complicated. Therefore, an efficient and simple method for the preparation of BPQDs by gas exfoliation with the assistance of liquid N2 (l-N2) was developed for the first time in this study. This method is environmentally friendly and impurity-free because l-N2 is a nontoxic liquid that can be gasified to form N2. The obtained BPQDs were characterized by XRD, Raman, SEM, TEM and UV-Vis techniques and they had a lateral size of 9±3 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA