Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 121: 155083, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722244

RESUMO

BACKGROUND: Astrocytes play a vital role in offering functional support for neurons, which are related to the pathogenic mechanism of depression. Ginsenoside Rb1 (GRb1) is demonstrated with antidepressant-like activities. PURPOSE: We aimed to investigate whether GRb1 can inhibit mitophagy-mediated astrocytic pyroptosis to protect neurons in depression. STUDY DESIGN: Model rats were subjected to chronic unpredictable mild stress (CUMS) for determining the in vivo antidepressant activity of GRb1. METHODS: The mitophagy-mediated antipyroptosis role of GRb1 was assessed in lipopolysaccharide (LPS) + ATP-stimulated astrocytes. The mechanism by which GRb1 protects synaptic plasticity was investigated using hippocampal neurons incubated in an astrocyte medium. The rat depressive-like behaviors were determined through sucrose preference, forced swimming, and the open-field tests. Escitalopram was used in the anti-depression control of GRb1. Cyclosporin A (CsA), a mitophagy inhibitor, and interleukin (IL)-1ß were used to reverse the role of GRb1 in mitophagy and pyroptosis, respectively. RESULTS: GRb1 inhibited LPS-induced inflammation and activation in the astrocytes and repressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Also, GRb1 repressed LPS + ATP-promoted astrocytic pyroptosis. During GRb1 treatment, the activation of mitophagy with a decrease in ROS was observed in LPS + ATPs-stimulated astrocytes. CsA enhanced GRb1-decreased ROS and promoted astrocytic pyroptosis. The GRb1-treated astrocyte medium suppressed neuron death and increased neuron viability and synaptic density. Escitalopram and GRb1 improved the depressive-like behaviors of the rats. GRb1 activated mitophagy and inhibited astrocytic activation and pyroptosis in rats with depression. It also reduced impairments in synaptic structures and increased synaptic density in depressive-like rats. IL-1ß increased astrocytic pyroptosis and reversed GRb1-enhanced synaptic plasticity in the rats exposed to CUMS. There were no statistical changes in depressive-like behaviors between GRb1 and Escitalopram groups. CONCLUSION: GRb1 modulates mitophagy and the NF-κB pathway to inhibit astrocytic pyroptosis, thereby maintaining neurological homeostasis by repressing inflammation and enhancing synaptic plasticity.


Assuntos
Astrócitos , NF-kappa B , Ratos , Animais , Astrócitos/metabolismo , NF-kappa B/metabolismo , Piroptose , Escitalopram , Lipopolissacarídeos , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Antidepressivos/uso terapêutico , Neurônios/metabolismo , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Trifosfato de Adenosina/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo
2.
J Neuroinflammation ; 20(1): 31, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765376

RESUMO

OBJECTIVE: Patients with hypertension have a risk of depression. Morinda officinalis oligosaccharides (MOOs) have anti-depressant properties. In this study, we aimed to determine whether MOOs can improve the symptoms of depression in individuals with hypertension. METHODS: Dahl salt-sensitive rats fed with a high-salt diet were stimulated by chronic unpredictable mild stress to mimic hypertension with depression. Primary astrocytes and neurons were isolated from these rats. Astrocytes underwent LPS stimulation to simulate the inflammatory astrocytes during depression. MOOs were administrated at 0.1 mg/g/day in vivo and 1.25, 2.5, and 5 mg/mL in vitro. Mitophagy was inhibited using 5 mM 3-methyladenine (3-MA). Astrocyte-mediated neurotoxicity was detected by co-culturing astrocytes and neurons. RESULTS: MOOs decreased systolic pressure, diastolic pressure, and mean arterial pressure, thereby improving depression-like behavior, including behavioral despair, lack of enthusiasm, and loss of pleasure during hypertension with depression. Furthermore, MOOs inhibited inflammation, astrocytic dysfunction, and mitochondrial damage in the brain. Then, MOOs promoted autophagosome and lysosome enriched in mitochondria in LPS-stimulated astrocytes. MOOs suppressed mitochondrial damage and the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß in astrocytes undergoing LPS stimulation. Importantly, MOOs rescued the impaired neurons co-cultured with astrocytes. The effects of MOOs on LPS-stimulated astrocytes were reversed by 3-MA. Finally, MOOs upregulated LPS-downregulated Mfn2 expression in astrocytes. Mfn2 inhibition partly reversed the effects of MOOs on hypertension with depression. Intriguingly, Mfn2 suppression activated PI3K/Akt/mTOR pathway during MOOs treatment. CONCLUSIONS: Astrocytes develop neuroinflammation in response to mitochondrial damage during hypertension with depression. MOOs upregulated Mfn2 expression to activate the PI3K/Akt/mTOR pathway-mediated mitophagy, thereby removing impaired mitochondria in astrocytes. HIGHLIGHTS: 1. MOOs have anti-hypertensive and anti-depressive properties. 2. MOOs inhibit inflammation and injury in astrocytes during hypertension with depression. 3. MOOs induce mitophagy activation in inflammatory astrocytes with mitochondrial damage. 4. MOOs upregulate Mfn2 expression in astrocytes. 5. Mfn2 activates mitophagy to resist mitochondrial damage in astrocytes.


Assuntos
Hipertensão , Morinda , Ratos , Animais , Mitofagia , Depressão/tratamento farmacológico , Depressão/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Endogâmicos Dahl , Inflamação/metabolismo , Interleucina-6/metabolismo , Hipertensão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Astrócitos/metabolismo
3.
CNS Neurosci Ther ; 29(2): 669-681, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36550591

RESUMO

OBJECTIVE: This investigation aims to determine the antidepressant role of Xingpijieyu formula (XPJYF) mediated via gut microbiota (GM)-brain axis. METHODS: We collected fecal microbiota from patients with depressive disorder (DD) and cultured microbiota in vitro. Some of microbiota were transplanted into germ-free rats with the intragastric administration of XPJYF grain at the dose of 1.533 g/kg/day. The behaviors were studied by forced swimming test, open field test, sucrose preference test, and body weight. Products of hypothalamus-pituitary-adrenocortical (HPA) axis, neurotransmitter, and serum cytokines were investigated by enzyme linked immunosorbent assay. Glial fibrillary acidic protein (GFAP), a biomarker of astrocyte, was quantified using immunofluorescence. Microbiota culturing in vitro after XPJYF treatment was analyze by 16 s RNA sequencing technology. We used lipopolysaccharide (LPS) to mimic activated rat primary astrocyte in vitro. Brain-derived neurotrophic factor (BDNF), cytokines, and oxidative stress factors were determined by western blotting, and glycometabolism in astrocyte was investigated by 2-deoxy-D-glucose (2-DG) uptake, adenosine triphosphate (ATP), and glucose-1-phosphate (G1P) kits. RESULTS: Microbiota composition during 8 mg/ml of XPJYF (H12-8) for 12 h showed the more consistency. Lactococcus is enriched in DD-derived microbiota composition, and Biffdobacterium and Lactobacillus in H12-8 group. GLUCOSE1PMETAB-PWY and PWY-7328 of which biofunctions were dominantly encoded by Biffdobacterium were the top two of altered pathways. XPJYF improved behaviors and repressed astrocyte activation in depression rats. XPJYF elevated 2-DG uptake, ATP, glucose-1-phosphate, and brain-derived neurotrophic factor (BDNF), and inhibited cytokines and oxidative stress in LPS-induced astrocyte. CONCLUSION: XPJYF treatment targets inflammation, activation, and glycometabolim in astrocyte via gut microbiota modulation, thereby improve animal behaviors, HPA axis dysfunction, and neurotransmitter synthesis in depression rats.


Assuntos
Transtorno Depressivo , Microbioma Gastrointestinal , Ratos , Animais , Depressão/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Lipopolissacarídeos , Sistema Hipófise-Suprarrenal/metabolismo , Citocinas/metabolismo , Transtorno Depressivo/tratamento farmacológico , Estresse Psicológico/metabolismo
4.
CNS Neurosci Ther ; 28(9): 1409-1424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713215

RESUMO

AIM: The investigation aims to evaluate the potential effect of Shugan Granule (SGKL) on the gut, brain, and behaviors in rats exposed to chronic restraint stress (CRS). METHODS: The fecal microbiota and metabolite changes were studied in rats exposed to CRS and treated with SGKL (0.1 mg/kg/day). Depressive behaviors of these rats were determined through an open-field experiment, forced swimming test, sucrose preference, and weighing. Moreover, LPS-stimulated microglia and CRS-stimulated rats were treated with SGKL to investigate the regulation between SGKL and the PI3K/Akt/pathway, which is inhibited by LY294002, a PI3K inhibitor. RESULTS: (i) SGKL improved the altered behaviors in CRS-stimulated rats; (ii) SGKL ameliorated the CRS-induced neuronal degeneration and tangled nerve fiber and also contributed to the recovery of intestinal barrier injury in these rats; (iii) SGKL inhibited the hippocampus elevations of TNF-α, IL-1ß, and IL-6 in response to CRS modeling; (iv) based on the principal coordinates analysis (PCoA), SGKL altered α-diversity indices and shifted ß-diversity in CRS-stimulated rats; (v) at the genus level, SGKL decreased the CRS-enhanced abundance of Bacteroides; (vi) Butyricimonas and Candidatus Arthromitus were enriched in SGKL-treated rats; (vii) altered gut microbiota and metabolites were correlated with behaviors, inflammation, and PI3K/Akt/mTOR pathway; (viii) SGKL increased the LPS-decreased phosphorylation of the PI3K/Akt/mTOR pathway in microglia and inhibited the LPS-induced microglial activation; (ix) PI3K/Akt/mTOR pathway inactivation reversed the SGKL effects in CRS rats. CONCLUSION: SGKL targets the PI3K/Akt/mTOR pathway by altering gut microbiota and metabolites, which ameliorates altered behavior and inflammation in the hippocampus.


Assuntos
Depressão , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Estresse Psicológico , Animais , Doença Crônica , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Restrição Física/efeitos adversos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
Mol Neurobiol ; 59(5): 2855-2873, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35230663

RESUMO

Ginsenoside Rg1 is the principal active ingredient in ginseng. The antidepressant effects of Rg1 have been validated; however, the specific underlying mechanism of this effect needs further research. Rats were subjected to the chronic restraint stress (CRS) depression model. Rg1, or a positive control drug, was administered to the rats. Depression-like behaviours were evaluated through behavioural experiments. Cytokine, mRNA, protein, ATP, and mitochondria DNA levels were detected using the indicated methods. Lentivirus-packaged plasmids were injected into the rat brain for GAS5 overexpression or knockdown. In vitro mitochondrial dysfunction was evaluated by detecting mitochondrial reactive oxygen species and mitochondrial membrane potential. Direct interaction between GAS5 and EZH2 was validated by RNA immunoprecipitation and RNA pull-down assay. The enrichment of EZH2 and H3K27me3 was evaluated through chromatin immunoprecipitation quantitative real-time PCR. Rg1 treatment alleviated depression-like behaviours, microglial activation, and mitochondrial dysfunction in CRS rats. Similarly, GAS5 knockdown revealed a similar protective effect of Rg1 treatment. GAS5 overexpression in the rat brain compromised the protective effect of Rg1 treatment. Moreover, Rg1 treatment or GAS5 knockdown attenuated microglial activation and mitochondrial dysfunction in vitro. Mechanically, GAS5 was suppressed SOCS3 and NRF2 expression by facilitating EZH2-mediated transcriptional repression. Rg1 attenuated microglial activation and improved mitochondrial dysfunction in depression by downregulating GAS5 expression. Mechanically, GAS5 might regulate microglial activation and mitochondrial dysfunction via the epigenetic suppression of NRF2 and SOCS3.


Assuntos
Ginsenosídeos , Fator 2 Relacionado a NF-E2 , Animais , Depressão/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Microglia/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , RNA/metabolismo , Ratos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
6.
Ying Yong Sheng Tai Xue Bao ; 33(1): 17-24, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35224921

RESUMO

Total solar radiation is an important factor affecting carbon exchange in forest ecosystem. In order to understand the effects of radiation change on carbon exchange in Chinese fir plantation, long-term monitoring data of carbon dioxide flux and meteorological factors measured by open eddy covariance system and meteorological gradient observation system were used in this study. The clearness index (kt) was used to represent the condition of solar radiation. We analyzed the effects of kt on net ecosystem exchange of carbon dioxide (NEE) in the central subtropical Chinese fir plantation during the growing season (from April to October). The results showed that total solar radiation in clear sky was usually higher in the morning than that in the afternoon, and that NEE was lower in the morning than in the afternoon. Such difference in NEE reached the maximum when the solar elevation angle was about 50°. At the medium kt(0.42-0.52), carbon absorption of Chinese fir plantation was the strongest. The ave-rage maximum relative change of NEE in 10 years in different solar elevation angles ranged from 11.0% to 29.4%, while the minimum and maximum critical values appeared at 35°-40° and 45°-50°, respectively. When kt was at the moderate degree due to the existence of clouds, carbon absorption and diffuse photosynthetically active radiation of Chinese fir plantation reached the maximum, and the latter might be the main reason for the former. Moderate radiation condition with the presence of cloud clould promote NEE of Chinese fir plantation and lead to largest carbon absorption.


Assuntos
Dióxido de Carbono , Cunninghamia , Ciclo do Carbono , Ecossistema , Florestas , Estações do Ano
7.
Front Immunol ; 12: 672165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054851

RESUMO

Influenza A virus (IAV), a highly infectious respiratory pathogen, remains a major threat to global public health. Numerous long non-coding RNAs (lncRNAs) have been shown to be implicated in various cellular processes. Here, we identified a new lncRNA termed RIG-I-dependent IAV-upregulated noncoding RNA (RDUR), which was induced by infections with IAV and several other viruses. Both in vitro and in vivo studies revealed that robust expression of host RDUR induced by IAV was dependent on the RIG-I/NF-κB pathway. Overexpression of RDUR suppressed IAV replication and downregulation of RDUR promoted the virus replication. Deficiency of mouse RDUR increased virus production in lungs, body weight loss, acute organ damage and consequently reduced survival rates of mice, in response to IAV infection. RDUR impaired the viral replication by upregulating the expression of several vital antiviral molecules including interferons (IFNs) and interferon-stimulated genes (ISGs). Further study showed that RDUR interacted with ILF2 and ILF3 that were required for the efficient expression of some ISGs such as IFITM3 and MX1. On the other hand, we found that while NF-κB positively regulated the expression of RDUR, increased expression of RDUR, in turn, inactivated NF-κB through a negative feedback mechanism to suppress excessive inflammatory response to viral infection. Together, the results demonstrate that RDUR is an important lncRNA acting as a critical regulator of innate immunity against the viral infection.


Assuntos
Imunidade Inata/imunologia , NF-kappa B/imunologia , Infecções por Orthomyxoviridae/imunologia , RNA Longo não Codificante/imunologia , Animais , Linhagem Celular , Proteína DEAD-box 58/imunologia , Retroalimentação Fisiológica , Humanos , Vírus da Influenza A , Influenza Humana/imunologia , Camundongos , Receptores Imunológicos/imunologia
8.
Cell Microbiol ; 21(8): e13036, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31045320

RESUMO

Long noncoding RNAs (lncRNAs) are single-stranded RNA molecules longer than 200 nt that regulate many cellular processes. MicroRNA 155 host gene (MIR155HG) encodes the microRNA (miR)-155 that regulates various signalling pathways of innate and adaptive immune responses against viral infections. MIR155HG also encodes a lncRNA that we call lncRNA-155. Here, we observed that expression of lncRNA-155 was markedly upregulated during influenza A virus (IAV) infection both in vitro (several cell lines) and in vivo (mouse model). Interestingly, robust expression of lncRNA-155 was also induced by infections with several other viruses. Disruption of lncRNA-155 expression in A549 cells diminished the antiviral innate immunity against IAV. Furthermore, knockout of lncRNA-155 in mice significantly increased IAV replication and virulence in the animals. In contrast, overexpression of lncRNA-155 in human cells suppressed IAV replication, suggesting that lncRNA-155 is involved in host antiviral innate immunity induced by IAV infection. Moreover, we found that lncRNA-155 had a profound effect on expression of protein tyrosine phosphatase 1B (PTP1B) during the infection with IAV. Inhibition of PTP1B by lncRNA-155 resulted in higher production of interferon-beta (IFN-ß) and several critical interferon-stimulated genes (ISGs). Together, these observations reveal that MIR155HG derived lncRNA-155 can be induced by IAV, which modulates host innate immunity during the virus infection via regulation of PTP1B-mediated interferon response.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Vírus da Influenza A/imunologia , MicroRNAs/genética , Infecções por Orthomyxoviridae/genética , RNA Longo não Codificante/genética , Células A549 , Animais , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/patogenicidade , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon beta/genética , Interferon beta/imunologia , Interferon gama/genética , Interferon gama/imunologia , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Células NIH 3T3 , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Células RAW 264.7 , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/imunologia , Transdução de Sinais , Análise de Sobrevida , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Ubiquitinas/genética , Ubiquitinas/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA