Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Cell Dev Biol ; 12: 1421763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149512

RESUMO

The myosin heavy chain 9 (MYH9) gene, located on human chromosome 22, encodes non-muscle myosin heavy chain IIA (NM IIA). This protein is essential to various cellular events, such as generating intracellular chemomechanical force and facilitating the movement of the actin cytoskeleton. Mutations associated with thrombocytopenia in autosomal dominant diseases first highlighted the significance of the MYH9 gene. In recent years, numerous studies have demonstrated the pivotal roles of MYH9 in various cancers. However, its effects on cancer are intricate and not fully comprehended. Furthermore, the elevated expression of MYH9 in certain malignancies suggests its potential as a target for tumor therapy. Nonetheless, there is a paucity of literature summarizing MYH9's role in tumors and the therapeutic strategies centered on it, necessitating a systematic analysis. This paper comprehensively reviews and analyzes the pertinent literature in this domain, elucidating the fundamental structural characteristics, biological functions, and the nexus between MYH9 and tumors. The mechanisms through which MYH9 contributes to tumor development and its multifaceted roles in the tumorigenic process are also explored. Additionally, we discuss the relationship between MYH9-related diseases (MYH9-RD) and tumors and also summarize tumor therapeutic approaches targeting MYH9. The potential clinical applications of studying the MYH9 gene include improving early diagnosis, clinical staging, and prognosis of tumors. This paper is anticipated to provide novel insights for tumor therapy.

3.
J Sci Med Sport ; 27(7): 458-465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38584010

RESUMO

OBJECTIVES: This study aimed to compare and rank the effectiveness of aerobic exercise, resistance training, combined aerobic and resistance exercise, and high-intensity interval training on inflammatory marker levels in women with overweight and obesity by using network meta-analysis. DESIGN: Systematic review with network meta-analysis and Grading Recommendations Assessment, Development, and Evaluation of the evidence. METHODS: Literature as of April 2023 was searched from databases such as Cochrane, Embase, Pubmed, Web of Science, and EBSCO, and English-language randomized controlled trials that meet the inclusion criteria were selected. A random-effects network meta-analysis was performed within a frequentist framework. RESULTS: A total of 75 articles and 4048 participants were included. Resistance training was the most recommended type of exercise to decrease C-reactive protein levels (surface under cumulative ranking = 90.1; standardized mean difference = -0.79, 95 % confidence interval: -1.17, -0.42); aerobic exercise was the most effective exercise type to reduce tumor necrosis factor-α levels (surface under cumulative ranking = 87.9; standardized mean difference = -0.79, 95 % confidence interval: -1.19, -0.39); combined aerobic and resistance exercise was the most effective type of exercise to reduce interleukin-6 levels (surface under cumulative ranking = 75.8; standardized mean difference = -0.77, 95 % confidence interval: -1.38, -0.16) and leptin levels (surface under cumulative ranking = 77.1; standardized mean difference = -0.96, 95 % confidence interval: -1.72, -0.20), and high-intensity interval training was the type of exercise that was well suited to increase adiponectin levels (surface under cumulative ranking = 87.2; standardized mean difference = 0.99, 95 % confidence interval: 0.27, 1.71). CONCLUSIONS: This network meta-analysis based on randomized controlled trials confirmed that different exercise types have different efficacies on inflammation indicators among women with overweight and obesity. The findings may provide clinicians and healthcare professionals with insights into the implementation of exercise programs for women struggling with overweight and obesity.


Assuntos
Biomarcadores , Exercício Físico , Metanálise em Rede , Obesidade , Sobrepeso , Ensaios Clínicos Controlados Aleatórios como Assunto , Treinamento Resistido , Humanos , Feminino , Obesidade/sangue , Obesidade/terapia , Sobrepeso/terapia , Sobrepeso/sangue , Biomarcadores/sangue , Proteína C-Reativa/análise , Fator de Necrose Tumoral alfa/sangue , Interleucina-6/sangue , Treinamento Intervalado de Alta Intensidade , Leptina/sangue , Adiponectina/sangue , Inflamação/sangue
4.
Biosens Bioelectron ; 253: 116167, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422813

RESUMO

Digital polymerase chain reaction (dPCR) is extensively used for highly sensitive disease diagnosis due to its single-molecule detection ability. However, current dPCR systems require intricate DNA sample distribution, rely on cumbersome external heaters, and exhibit sluggish thermal cycling, hampering efficiency and speed of the dPCR process. Herein, we presented the development of a microwell array based dPCR system featuring an integrated self-heating dPCR chip. By utilizing hydrodynamic and electrothermal simulations, the chip's structure is optimized, resulting in improved partitioning within microwells and uniform thermal distribution. Through strategic hydrophilic/hydrophobic modifications on the chip's surface, we effectively secured the compartmentalization of sample within the microwells by employing an overlaying oil phase, which renders homogeneity and independence of samples in the microwells. To achieve precise, stable, uniform, and rapid self-heating of the chip, the ITO heating layer and the temperature control algorithm are deliberately designed. With a capacity of 22,500 microwells that can be easily expanded, the system successfully quantified EGFR plasmid solutions, exhibiting a dynamic linear range of 105 and a detection limit of 10 copies per reaction. To further validate its performance, we employed the dPCR platform for quantitative detection of BCR-ABL1 mutation gene fragments, where its performance was compared against the QuantStudio 3D, and the self-heating dPCR system demonstrated similar analytical accuracy to the commercial dPCR system. Notably, the individual chip is produced on a semiconductor manufacturing line, benefiting from mass production capabilities, so the chips are cost-effective and conducive to widespread adoption and accessibility.


Assuntos
Técnicas Biossensoriais , Calefação , Algoritmos , Hidrodinâmica , Mutação
5.
J Egypt Natl Canc Inst ; 35(1): 41, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105365

RESUMO

BACKGROUND: Neuroblastoma, one of the most prevalent childhood cancers, is often treated with surgery, radiation, and chemotherapy. However, prognosis and survival are still dismal for children with neuroblastoma at high risk. Consequently, it is vital to identify new and effective treatment targets. As a component of the meiotic cohesion complex, REC8 is involved in a wide range of malignancies. The current work assessed the impact of REC8 knockdown on SH-SY5Y and SK-N-AS neuroblastoma cells and delved into the molecular mechanism behind this effect. METHODS: Knockdown of REC8 using the small interfering (si) RNA technology, and the results were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. The Cell Counting Kit-8 (CCK-8) was used to examine cell proliferation, while flow cytometry was used to examine cell cycle progression and apoptosis. Analyses of angiogenesis included tube formation experiments. Transwell tests were used to examine cell migration and invasion. RESULTS: The data showed that downregulation of the REC8 led to a substantial decrease in cell proliferation by stopping the cell cycle in the G1 phase. REC8 knockdown significantly reduced neuroblastoma cell proliferation, migration, invasion, angiogenesis, induced cell cycle arrest, and enhanced apoptosis. We also discovered that repressing REC8 expression in neuroblastoma cell lines SH-SY5Y and SK-N-AS reduced their ability to activate the STAT3/VEGF signaling pathway. CONCLUSIONS: Neuroblastoma therapy may benefit from targeting REC8 and its downstream targets.


Assuntos
Proteínas de Ciclo Celular , Neuroblastoma , Humanos , Angiogênese , Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Transdução de Sinais , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
6.
Exp Gerontol ; 183: 112310, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844768

RESUMO

IMPORTANCE: Postmenopausal women affected by overweight and obesity are susceptible to a variety of diseases due to inflammation. Exercise may reduce the risk of disease by attenuating low-grade chronic inflammation. OBJECTIVE: We conducted a systematic review and meta-analysis to investigate the effects of exercise on inflammatory markers in postmenopausal women struggling with overweight and obesity. METHOD: Literature as of May 2023 was searched from databases such as Cochrane, Embase, Pubmed, Web of Science, and EBSCO and English-language randomized controlled trials (RCTs) that meet the inclusion criteria were selected. Studies were included based on the following criteria: (A) Written in English; (B) RCTs; (C) Postmenopausal women impacted by overweight and obesity as research objects; (D) Outcome measurements include CRP, TNF-α, IL-6, and adiponectin; (E) Duration of the exercise intervention is eight weeks. RESULTS: A total of 34 articles and 2229 participants were included. Exercise can significantly reduce the level of C-reactive protein (CRP) (MD: -0.59, 95 % CI: -0.87 to -0.31, p < 0.00001), tumor necrosis factor-α (TNF-α) (MD: -0.65, 95 % CI: -0.94 to -0.35, p < 0.00001), interleukin-6 (IL-6) (MD: -0.48, 95 % CI: -0.75 to -0.21, p < 0.00001), and exercise can significantly increase the level of adiponectin (MD: 0.33, 95 % CI: 0.02 to 0.65, p = 0.04) in women impacted by overweight and obesity. CONCLUSION: These results suggest that exercise may be an effective intervention for reducing pro-inflammatory markers and increasing adiponectin in postmenopausal women impacted by overweight and obesity. The findings may provide clinicians and healthcare professionals with insights into the implementation of exercise programs for postmenopausal women living with overweight and obesity.


Assuntos
Interleucina-6 , Sobrepeso , Feminino , Humanos , Adiponectina , Proteína C-Reativa , Inflamação , Obesidade/terapia , Sobrepeso/terapia , Pós-Menopausa , Fator de Necrose Tumoral alfa
7.
RSC Adv ; 13(42): 29773-29783, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37829710

RESUMO

Notoginsenoside R2 is a crucial active saponin in Panax notoginseng (Burk.) F. H. Chen, but its natural content is relatively low. In this study, we investigated the biotransformation of notoginsenoside R1 to 20(S/R)-notoginsenoside R2 using Lactiplantibacillus plantarum S165, compared the inhibitory effects on cancer cell proliferation and conducted a mechanistic study. Notoginsenoside R1 was transformed using Lactiplantibacillus plantarum S165 at 37 °C for 21 days. The fermentation products were identified using a combination of HPLC, UPLC-MS/MS, and 13C-NMR methods. The inhibition effects of 20(S/R)-notoginsenoside R2 on H22 hepatoma cells were assessed by CCK-8 and TUNEL assays, and the underlying mechanism was investigated by Western blotting. Lactiplantibacillus plantarum S165 could effectively transform notoginsenoside R1 to 20(S/R)-notoginsenoside R2 with a conversion yield of 82.85%. Our results showed that 20(S/R)-notoginsenoside R2 inhibited H22 hepatoma cells proliferation and promoted apoptosis. The apoptosis of H22 hepatoma cells was promoted by 20(S/R)-notoginsenoside R2 through the blockade of the PI3K/AKT/mTOR signaling pathway. The biotransformation method used in this study resulted in the production of 20(S)-notoginsenoside R2 and 20(R)-notoginsenoside R2 from notoginsenoside R1, and the anti-tumor activity of the transformed substance markedly improved.

8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1290-1295, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37846674

RESUMO

OBJECTIVE: To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells. METHODS: Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay. RESULTS: Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells. CONCLUSION: Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.


Assuntos
Leucemia Mieloide Aguda , Metionina , Humanos , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina B1/farmacologia , Proliferação de Células , Metionina/farmacologia , Ciclo Celular , Apoptose , Divisão Celular , Proteínas de Ciclo Celular , Células Jurkat , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células HL-60
9.
Neurosci Lett ; 814: 137460, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37619699

RESUMO

Growing evidence suggests that probiotics can ameliorate depression by regulating the microbiota-gut-brain axis. However, the mechanism of action of probiotics in depressive disorders remains incompletely understood. This study aimed to investigate the effect of Lacticaseibacillus rhamnosus TF318 in a corticosterone (CORT)-induced rat model of depression. The sucrose preference test (SPT) and Morris water maze (MWM) test showed that oral administration of L. rhamnosus TF318 for 21 d significantly prevented depressive behaviors. Administration of L. rhamnosus TF318 resulted in lower hippocampal levels of adrenocorticotropic hormone and corticotropin-releasing factor and serum levels of CORT and restoration of hippocampal levels of 5-hydroxytryptamine, dopamine, and norepinephrine. A marked increase was observed in the hippocampal concentration of brain-derived neurotrophic factor (BDNF), a change that may have involved the cyclic adenosine monophosphate (cAMP)/cAMP response element-binding (CREB)/BDNF signaling pathway. Treatment with L. rhamnosus TF318 corrected CORT-induced abnormalities in the gut microbiota, significantly increasing the relative abundance of Firmicutes. In conclusion, supplementation with L. rhamnosus TF318 prevented CORT-induced depressive behaviors by upregulating BDNF expression and modulating gut microbiota, suggesting that this strain has the potential as a novel probiotic with antidepressant effects.


Assuntos
Depressão , Lacticaseibacillus rhamnosus , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lacticaseibacillus , Antidepressivos/farmacologia , Hipocampo/metabolismo
10.
Pak J Pharm Sci ; 36(2): 379-385, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530144

RESUMO

Lycorine, a benzylphenanthridine-type alkaloid extracted form Amarillidaceae genera, exhibits an efficacy against various types of cancer. Nonetheless, the impact of lycorine treatment on neuroblastoma has not yet been investigated. Here we utilized a combinatorial strategy to explore and to understand the effect of lycorine on neuroblastoma Neuro-2a cells. Our results indicated that lycorine inhibits the Neuro-2a cells proliferation by promoting cell apoptosis. In addition, wound healing assay revealed that lycorine inhibits the Neuo-2a cells migration. Comparative transcriptome analysis showed that lycorine has the potential to affect cycle pathway. Flow cytometry analysis confirmed that lycorine arrested the Neuro-2a cell cycle at G2/M phase. Furthermore, we detected that the protein expression of Cyclin A, Cyclin B1 and Cyclin E were decreased, whereas protein of p53, Tgfß3, Gadd45ß, Gadd45γ, p21 and p27 were increased after treatment with lycorine. Collectively, we propose that lycorine might be a valuable candidate therapeutic agent in combating neuroblastoma.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Neuroblastoma , Humanos , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Ciclo Celular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37639209

RESUMO

Probiotics are widely recognized for their ability to prevent and therapy antibiotic-associated diarrhea (AAD). This study was designed to evaluate Lactiplantibacillus plantarum ELF051 ability to prevent colon inflammation and its effect on gut microbial composition in a mouse model of AAD. The mice were intragastrically administered triple antibiotics for 7 days and then subjected to L. plantarum ELF051 for 14 days. The administration of L. plantarum ELF051 ameliorated the pathological changes in the colon tissue, downregulated interleukin (IL)-1ß and tumor necrosis factor (TNF)-α, and upregulated IL-10, and increased the intestinal short-chain fatty acids (SCFAs) level. Lactiplantibacillus plantarum ELF051 also regulated the Toll-like receptor/myeloid differentiation primary response 88/nuclear factor kappa light chain enhancer of activated B cells (TLR4/MyD88/NF-κB) and the phosphatidylinositol 3-kinase/protein kinase B/ NF-κB (PI3K/AKT/ NF-κB) inflammatory signaling pathways. 16S rRNA analyses showed that L. plantarum ELF051 increased the abundance and diversity of gut bacteria, restoring gut microbiota imbalance. A Spearman's rank correlation analysis showed that lactobacilli are closely associated with inflammatory markers and SCFAs. This work demonstrated that L. plantarum ELF051 can attenuate antibiotic-induced intestinal inflammation in a mouse AAD model by suppressing the pro-inflammatory response and modulating the gut microbiota.

12.
RSC Med Chem ; 14(3): 563-572, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970143

RESUMO

In the past two decades, photodynamic therapy (PDT) has become an effective method for the treatment of cancer. However, the posttreatment residue of photodynamic agents (PDAs) causes long-term skin phototoxicity. Here, we apply naphthalene-derived, box-like tetracationic cyclophanes, named NpBoxes, to bind to clinically used porphyrin-based PDAs to alleviate their posttreatment phototoxicity by reducing their free content in skin tissues and 1O2 quantum yield. We show that one of the cyclophanes, 2,6-NpBox, could include the PDAs to efficiently suppress their photosensitivity for the generation of reactive oxygen species. A tumour-bearing mouse model study revealed that, when Photofrin, the most widely used PDA in clinic, was administrated at a dose corresponding to the clinical one, 2,6-NpBox of the same dose could significantly suppress its posttreatment phototoxicity on the skin induced by simulated sunlight irradiation, without imposing a negative influence on its PDT efficacy.

13.
Front Oncol ; 13: 1099104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776294

RESUMO

Introduction: The incidence of thyroid diseases has increased in recent years, and cervical lymph node metastasis (LNM) is considered an important risk factor for locoregional recurrence. This study aims to develop a deep learning-based computer-aided diagnosis (CAD) method to diagnose cervical LNM with thyroid carcinoma on computed tomography (CT) images. Methods: A new deep learning framework guided by the analysis of CT data for automated detection and classification of LNs on CT images is proposed. The presented CAD system consists of two stages. First, an improved region-based detection network is designed to learn pyramidal features for detecting small nodes at different feature scales. The region proposals are constrained by the prior knowledge of the size and shape distributions of real nodes. Then, a residual network with an attention module is proposed to perform the classification of LNs. The attention module helps to classify LNs in the fine-grained domain, improving the whole classification network performance. Results: A total of 574 axial CT images (including 676 lymph nodes: 103 benign and 573 malignant lymph nodes) were retrieved from 196 patients who underwent CT for surgical planning. For detection, the data set was randomly subdivided into a training set (70%) and a testing set (30%), where each CT image was expanded to 20 images by rotation, mirror image, changing brightness, and Gaussian noise. The extended data set included 11,480 CT images. The proposed detection method outperformed three other detection architectures (average precision of 80.3%). For classification, ROI of lymph node metastasis labeled by radiologists were used to train the classification network. The 676 lymph nodes were randomly divided into 70% of the training set (73 benign and 401 malignant lymph nodes) and 30% of the test set (30 benign and 172 malignant lymph nodes). The classification method showed superior performance over other state-of-the-art methods with an accuracy of 96%, true positive and negative rates of 98.8 and 80%, respectively. It outperformed radiologists with an area under the curve of 0.894. Discussion: The extensive experiments verify the high efficiency of the proposed method. It is considered instrumental in a clinical setting to diagnose cervical LNM with thyroid carcinoma using preoperative CT images. The future research can consider adding radiologists' experience and domain knowledge into the deep-learning based CAD method to make it more clinically significant. Conclusion: The extensive experiments verify the high efficiency of the proposed method. It is considered instrumental in a clinical setting to diagnose cervical LNM with thyroid carcinoma using preoperative CT images.

14.
Molecules ; 29(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202610

RESUMO

The present study aimed to increase the content of minor ginsenosides and enhance the anti-colorectal cancer activity of ginsenosides via biotransformation by Lactiplantibacillus plantarum MB11 screened from fermented foods. A subcutaneous transplantation tumor model of murine colorectal cancer CT26 cells was established in mice to study the anticarcinogenic activities and mechanism of fermented total ginsenosides (FTGs). The results showed that L. plantarum MB11 fermentation increased the content of minor ginsenosides and decreased that of major ginsenosides. FTGs reduced the tumor weight and size compared with the model group. Immunofluorescence and TdT-mediated dUTP nick end labeling (TUNEL) analysis showed that FTGs significantly increase the number of caspase-3 cells in tumor tissue and induce cell apoptosis. Mechanically, FTGs activate AMPK/mTOR autophagy pathway and regulate JAK2/STAT3 and Bax/Bcl-2/caspase-3 apoptosis pathway. Overall, fermentation with L. plantarum MB11 enhanced minor ginsenosides in total ginsenosides, and FTGs induced subcutaneous transplantation tumor autophagy and apoptosis in mice.


Assuntos
Ginsenosídeos , Lactobacillus plantarum , Neoplasias , Animais , Camundongos , Fermentação , Caspase 3 , Ginsenosídeos/farmacologia , Apoptose
15.
Front Oncol ; 13: 1263685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264739

RESUMO

Background: Breast cancer is the key global menace to women's health, which ranks first by mortality rate. The rate reduction and early diagnostics of breast cancer are the mainstream of medical research. Immunohistochemical examination is the most important link in the process of breast cancer treatment, and its results directly affect physicians' decision-making on follow-up medical treatment. Purpose: This study aims to develop a computer-aided diagnosis (CAD) method based on deep learning to classify breast ultrasound (BUS) images according to immunohistochemical results. Methods: A new depth learning framework guided by BUS image data analysis was proposed for the classification of breast cancer nodes in BUS images. The proposed CAD classification network mainly comprised three innovation points. First, a multilevel feature distillation network (MFD-Net) based on CNN, which could extract feature layers of different scales, was designed. Then, the image features extracted at different depths were fused to achieve multilevel feature distillation using depth separable convolution and reverse depth separable convolution to increase convolution depths. Finally, a new attention module containing two independent submodules, the channel attention module (CAM) and the spatial attention module (SAM), was introduced to improve the model classification ability in channel and space. Results: A total of 500 axial BUS images were retrieved from 294 patients who underwent BUS examination, and these images were detected and cropped, resulting in breast cancer node BUS image datasets, which were classified according to immunohistochemical findings, and the datasets were randomly subdivided into a training set (70%) and a test set (30%) in the classification process, with the results of the four immune indices output simultaneously from training and testing, in the model comparison experiment. Taking ER immune indicators as an example, the proposed model achieved a precision of 0.8933, a recall of 0.7563, an F1 score of 0.8191, and an accuracy of 0.8386, significantly outperforming the other models. The results of the designed ablation experiment also showed that the proposed multistage characteristic distillation structure and attention module were key in improving the accuracy rate. Conclusion: The extensive experiments verify the high efficiency of the proposed method. It is considered the first classification of breast cancer by immunohistochemical results in breast cancer image processing, and it provides an effective aid for postoperative breast cancer treatment, greatly reduces the difficulty of diagnosis for doctors, and improves work efficiency.

16.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361525

RESUMO

Adiponectin is an adipocytokine with anti-inflammatory and anticancer properties. Our previous study has shown that blood adiponectin levels were inversely correlated to the risk of nasopharyngeal carcinoma (NPC), and that adiponectin could directly suppress the proliferation of NPC cells. However, the effect of adiponectin on NPC metastasis remains unknown. Here, we revealed in clinical studies that serum adiponectin level was inversely correlated with tumor stage, recurrence, and metastasis in NPC patients, and that low serum adiponectin level also correlates with poor metastasis-free survival. Coculture with recombinant adiponectin suppressed the migration and invasion of NPC cells as well as epithelial-mesenchymal transition (EMT). In addition, recombinant adiponectin dampened the activation of NF-κB and STAT3 signaling pathways induced by adipocyte-derived proinflammatory factors such as leptin, IL-6, and TNF-α. Pharmacological activation of adiponectin receptor through its specific agonist, AdipoRon, largely stalled the metastasis of NPC cells. Taken together, these findings demonstrated that adiponectin could not only regulate metabolism and inhibit cancer growth, but also suppress the metastasis of NPC. Pharmacological activation of adiponectin receptor may be a promising therapeutic strategy to stall NPC metastasis and extend patients' survival.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , NF-kappa B/metabolismo , Neoplasias Nasofaríngeas/patologia , Adiponectina/metabolismo , Receptores de Adiponectina/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Invasividade Neoplásica , Fator de Transcrição STAT3/metabolismo
17.
Sci Rep ; 12(1): 15490, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109620

RESUMO

Probiotics are considered to play an crucial role in the treatment of high-fat diet (HFD)-induced lipid metabolic diseases, including metabolic syndrome (MS). This study aimed to investigate the effects of Lactobacillus plantarum S9 on MS in HFD-fed rats, and to explore the underlying role of probiotics in the treatment of MS. Sprague-Dawley rats were fed with HFD for 8 weeks, followed by the treatment of L. plantarum S9 for 6 weeks, and The body weight and blood glucose level of rats were detected on time. The results showed that L. plantarum S9 significantly decreased the body weight gain, Lee's index, and liver index. Additionally, L. plantarum S9 reduced the levels of serum lipids and insulin resistance. L. plantarum S9 also decreased the levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in liver. Moreover, the serum levels of MS-related inflammatory signaling molecules, including lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α), were significantly elevated. Western blot analysis showed that L. plantarum S9 inhibited the activation of nuclear factor-κB (NF-κB) pathway, decreased the expression level of Toll-like receptor 4 (TLR4), suppressed the activation of inflammatory signaling pathways, and reduced the expression levels of inflammatory factors in HFD-fed rats. Moreover, it further decreased the ratios of p-IκBα/IκBα, p-p65/NF-κB p65, and p-p38/p38. In summary, L. plantarum S9, as a potential functional strain, prevents or can prevent onset of MS.


Assuntos
Resistência à Insulina , Lactobacillus plantarum , Síndrome Metabólica , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Lactobacillus plantarum/metabolismo , Lipopolissacarídeos/metabolismo , Síndrome Metabólica/etiologia , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Appl Microbiol Biotechnol ; 106(18): 6077-6094, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35976426

RESUMO

Sodium bicarbonate pretreatment and solid-state fermentation (SSF) were used to maximize the nutritional value of corn germ meal (CGM) by inoculating it with Bacillus velezensis CL-4 (isolated from chicken cecal contents and capable of degrading lignocellulose). Based on genome sequencing, B. velezensis CL-4 has a 4,063,558 bp ring chromosome and 46.27% GC content. Furthermore, genes associated with degradation of lignocellulose degradation were detected. Pretreatment of CGM (PCGM) with sodium bicarbonate (optimized to 0.06 g/mL) neutralized low pH. Fermented and pretreated CGM (FPCGM) contained more crude protein (CP), soluble protein of trichloroacetic acid (TCA-SP), and total amino acids (aa) than CGM and PCGM. Degradation rates of cellulose and hemicellulose were reduced by 21.33 and 71.35%, respectively, after 48 h fermentation. Based on electron microscopy, FPCGM destroys the surface structure and adds small debris of the CGM substrate, due to lignocellulose breakdown. Furthermore, 2-oxoadipic acid and dimethyl sulfone were the most important metabolites during pretreatment. Concentrations of adenosine, cytidine, guanosine, S-methyl-5'-thioadenosine, and adenine decreased significantly after 48 h fermentation, whereas concentrations of probiotics, enzymes, and fatty acids (including palmitic, 16-hydroxypalmitic, and linoleic acids) were significantly improved after fermentation. In conclusion, the novel pretreatment of CGM provided a proof of concept for using B. velezensis CL-4 to degrade lignocellulose components, improve nutritional characteristics of CGM, and expand CGM lignocellulosic biological feed production. KEY POINTS: • Sodium bicarbonate (baking soda) can be used as an economical and green additive to pretreat corn germ meal; • Fermentation with B. velezensis degrades the cellulose and hemicellulose component of corn germ meal and improves its feed quality; • As a novel qualified presumption of safety (QPS) strain, B. velezensis should have broad potential applications in food and feed industries.


Assuntos
Bicarbonato de Sódio , Zea mays , Bacillus , Celulose/metabolismo , Fermentação , Lignina , Nutrientes , Bicarbonato de Sódio/metabolismo , Zea mays/metabolismo
19.
Int J Biol Macromol ; 213: 631-638, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35667460

RESUMO

Hydrogen sulfide (H2S) is a bioactive gas regulating insulin secretion and sensitivity, produced by sulfate-reducing bacteria in the gut. The present study investigated the effect of chondroitin sulfate (CS) treatment, which indirectly increased the H2S production on nonalcoholic fatty liver disease (NAFLD). A 7-week CS supplementation had beneficial effects on body weight gain, liver function, hepatic histology, and serum lipid levels. CS could ameliorate diet-induced insulin resistance and improve insulin sensitivity via the AKT pathway, and modulate gut microbiota composition, especially increased the abundance of Desulfovibrio and elevated levels of hydrogen sulfide (H2S). Collectively, these findings suggested that CS treatment was positively correlated with Desulfovibrio in the gut, and the metabolic H2S flowed into the liver via the gut-liver axis, thereby triggering the AKT signaling pathway and improving insulin resistance. Thus, CS-induced alterations in the gut microbiota seem a promising for ameliorating NAFLD.


Assuntos
Desulfovibrio , Sulfeto de Hidrogênio , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacologia , Desulfovibrio/metabolismo , Dieta Hiperlipídica , Sulfeto de Hidrogênio/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
ACS Biomater Sci Eng ; 8(7): 2979-2994, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35666956

RESUMO

Although nanomedicine has demonstrated great potential for combating drug resistance, its suboptimal recognition of malignant cells and limited transport across multiple biological obstacles seriously impede the efficacious accumulation of drugs in tumor lesions, which strikingly limits its application in the clinical therapy of drug-resistant triple-negative breast cancer (TNBC). Hence, a surface-variable drug delivery vehicle based on the modification of liposomes with a multifunctional peptide (named EMC) was fabricated in this work and used for encapsulating doxorubicin and the p-glycoprotein inhibitor tariquidar. This EMC peptide contains an EGFR-targeting bullet that was screened from a "one-bead one-compound" combinatorial library, an MMP-2-cleaved substrate, and a cell-penetrating segment. The EGFR-targeting sequence has been validated to possess excellent specificity and affinity for EGFR at both the cellular and molecular levels and could be unloaded from the EMC peptide by MMP-2 in the tumor microenvironment. This doxorubicin/tariquidar-coloaded and peptide-functionalized liposome (DT-pLip) exhibited superior efficacy in tumor growth inhibition to drug-resistant TNBC both in vitro and in vivo through EGFR targeting, osmotic enhancement in response to MMP-2, controllable release, and inhibited efflux. Consequently, our systematic studies indicated the potential of this liposome-based nanoplatform in the therapy of drug-resistant TNBC through targeting effects and tumor microenvironment-triggered penetration enhancement.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Lipossomos , Metaloproteinase 2 da Matriz , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Humanos , Lipossomos/uso terapêutico , Metaloproteinase 2 da Matriz/metabolismo , Peptídeos/química , Peptídeos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA