Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. med. biol. res ; 57: e13152, fev.2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534071

RESUMO

Abstract The cure rates for osteosarcoma have remained unchanged in the past three decades, especially for patients with pulmonary metastasis. Thus, a new and effective treatment for metastatic osteosarcoma is urgently needed. Anlotinib has been reported to have antitumor effects on advanced osteosarcoma. However, both the effect of anlotinib on autophagy in osteosarcoma and the mechanism of anlotinib-mediated autophagy in pulmonary metastasis are unclear. The effect of anlotinib treatment on the metastasis of osteosarcoma was investigated by transwell assays, wound healing assays, and animal experiments. Related proteins were detected by western blotting after anlotinib treatment, ATG5 silencing, or ATG5 overexpression. Immunofluorescence staining and transmission electron microscopy were used to detect alterations in autophagy and the cytoskeleton. Anlotinib inhibited the migration and invasion of osteosarcoma cells but promoted autophagy and increased ATG5 expression. Furthermore, the decreases in invasion and migration induced by anlotinib treatment were enhanced by ATG5 silencing. In addition, Y-27632 inhibited cytoskeletal rearrangement, which was rescued by ATG5 overexpression. ATG5 overexpression enhanced epithelial-mesenchymal transition (EMT). Mechanistically, anlotinib-induced autophagy promoted migration and invasion by activating EMT and cytoskeletal rearrangement through ATG5 both in vitro and in vivo. Our results demonstrated that anlotinib can induce protective autophagy in osteosarcoma cells and that inhibition of anlotinib-induced autophagy enhanced the inhibitory effects of anlotinib on osteosarcoma metastasis. Thus, the therapeutic effect of anlotinib treatment can be improved by combination treatment with autophagy inhibitors, which provides a new direction for the treatment of metastatic osteosarcoma.

2.
Braz J Med Biol Res ; 57: e13152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381883

RESUMO

The cure rates for osteosarcoma have remained unchanged in the past three decades, especially for patients with pulmonary metastasis. Thus, a new and effective treatment for metastatic osteosarcoma is urgently needed. Anlotinib has been reported to have antitumor effects on advanced osteosarcoma. However, both the effect of anlotinib on autophagy in osteosarcoma and the mechanism of anlotinib-mediated autophagy in pulmonary metastasis are unclear. The effect of anlotinib treatment on the metastasis of osteosarcoma was investigated by transwell assays, wound healing assays, and animal experiments. Related proteins were detected by western blotting after anlotinib treatment, ATG5 silencing, or ATG5 overexpression. Immunofluorescence staining and transmission electron microscopy were used to detect alterations in autophagy and the cytoskeleton. Anlotinib inhibited the migration and invasion of osteosarcoma cells but promoted autophagy and increased ATG5 expression. Furthermore, the decreases in invasion and migration induced by anlotinib treatment were enhanced by ATG5 silencing. In addition, Y-27632 inhibited cytoskeletal rearrangement, which was rescued by ATG5 overexpression. ATG5 overexpression enhanced epithelial-mesenchymal transition (EMT). Mechanistically, anlotinib-induced autophagy promoted migration and invasion by activating EMT and cytoskeletal rearrangement through ATG5 both in vitro and in vivo. Our results demonstrated that anlotinib can induce protective autophagy in osteosarcoma cells and that inhibition of anlotinib-induced autophagy enhanced the inhibitory effects of anlotinib on osteosarcoma metastasis. Thus, the therapeutic effect of anlotinib treatment can be improved by combination treatment with autophagy inhibitors, which provides a new direction for the treatment of metastatic osteosarcoma.


Assuntos
Neoplasias Ósseas , Indóis , Neoplasias Pulmonares , Osteossarcoma , Quinolinas , Animais , Humanos , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Autofagia , Transição Epitelial-Mesenquimal , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Citoesqueleto/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proteína 5 Relacionada à Autofagia/farmacologia , Proteína 5 Relacionada à Autofagia/uso terapêutico
3.
J Mater Chem B ; 12(7): 1816-1825, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291968

RESUMO

Photodynamic therapy (PDT) has shown great potential for tumor treatment as the method is noninvasive, highly selective, and causes minimal side effects. However, conventional type II PDT, which relies on 1O2, presents poor therapeutic efficacy for hypoxic tumors due to its reliance on oxygen. Here, CeO2/Ti3C2-MXene (CeO2@MXene) hybrids were successfully designed by growing CeO2in situ using Ti3C2-MXene (MXene) nanosheets. CeO2@MXene serves as a reduction-oxidation (REDOX) center due to the presence of Ce in the lattice of CeO2 nanoparticles. This REDOX center reacts with H2O2 to generate oxygen and weakens the hypoxic tumor cell environment, achieving type II PDT. At the same time, many other ROS (such as ⋅O2- and ⋅OH) can be produced via a type I photodynamic mechanism (electron transfer process). The CeO2@MXene heterojunction performs nanoenzymatic functions for synergistic type I and type II PDT, which improves cancer treatment.


Assuntos
Neoplasias Ósseas , Nitritos , Osteossarcoma , Elementos de Transição , Humanos , Peróxido de Hidrogênio , Hipóxia , Oxigênio
4.
Cancer Res ; 84(3): 449-467, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038966

RESUMO

The majority of patients with late-stage breast cancer develop distal bone metastases. The bone microenvironment can affect response to therapy, and uncovering the underlying mechanisms could help identify improved strategies for treating bone metastatic breast cancer. Here, we observed that osteoclasts reduced the sensitivity of breast cancer cells to DNA damaging agents, including cisplatin and the PARP inhibitor (PARPi) olaparib. Metabolic profiling identified elevated glutamine production by osteoclasts. Glutamine supplementation enhanced the survival of breast cancer cells treated with DNA damaging agents, while blocking glutamine uptake increased sensitivity and suppressed bone metastasis. GPX4, the critical enzyme responsible for glutathione oxidation, was upregulated in cancer cells following PARPi treatment through stress-induced ATF4-dependent transcriptional programming. Increased glutamine uptake and GPX4 upregulation concertedly enhanced glutathione metabolism in cancer cells to help neutralize oxidative stress and generate PARPi resistance. Analysis of paired patient samples of primary breast tumors and bone metastases revealed significant induction of GPX4 in bone metastases. Combination therapy utilizing PARPi and zoledronate, which blocks osteoclast activity and thereby reduces the microenvironmental glutamine supply, generated a synergistic effect in reducing bone metastasis. These results identify a role for glutamine production by bone-resident cells in supporting metastatic cancer cells to overcome oxidative stress and develop resistance to DNA-damaging therapies. SIGNIFICANCE: Metabolic interaction between osteoclasts and tumor cells contributes to resistance to DNA-damaging agents, which can be blocked by combination treatment with PARP and osteoclast inhibitors to reduce bone metastatic burden.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Osteoclastos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Glutamina/farmacologia , Neoplasias Ósseas/secundário , DNA , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
5.
ACS Appl Mater Interfaces ; 15(43): 50002-50014, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851535

RESUMO

Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.


Assuntos
Neoplasias Ósseas , Nanoporos , Osteossarcoma , Humanos , Nanomedicina , Doxorrubicina/farmacologia , Doxorrubicina/química , Osteossarcoma/tratamento farmacológico , Fototerapia , Linhagem Celular Tumoral
6.
Cell Biosci ; 12(1): 109, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842729

RESUMO

BACKGROUND: Pulmonary metastasis is the main cause of poor prognosis in osteosarcoma. Sialic acid-bound immunoglobulin lectin 15 (Siglec-15) has been demonstrated to be obviously correlated with pulmonary metastasis in osteosarcoma patients. However, the effect of Siglec-15 on autophagy in osteosarcoma remains unclear, while the role and mechanism of Siglec-15-related autophagy in lung metastasis also remain unknown. METHODS: The expression levels of Siglec-15 and Beclin-1 were detected in osteosarcoma tissues using immunohistochemistry (IHC). The effect of Siglec-15 on metastasis was investigated using Transwell, wound healing and animal experiments with osteosarcoma cells. Corresponding proteins were confirmed using Western blotting when Siglec-15 or Beclin-1 was silenced or overexpressed. Changes in autophagy and the cytoskeleton were detected using immunofluorescence and transmission electron microscopy. RESULTS: Siglec-15 and Beclin-1 expression was evaluated both in lung metastases and in patients who presented with pulmonary metastasis of osteosarcoma. Immunoprecipitation experiments revealed that Siglec-15 interacts directly with Beclin-1, an important autophagic protein. Moreover, loss of Siglec-15 distinctly inhibited autophagy and reduced Beclin-1/ATG14 expression. The decreased invasion and migration caused by Siglec-15 silencing could be reversed by Beclin-1 overexpression. Additionally, autophagy can promote the epithelial-mesenchymal transition (EMT) and affect cytoskeletal rearrangement, which was confirmed by overexpression or silencing of Beclin-1. CONCLUSIONS: These findings confirmed the role of Siglec-15 in the regulation of autophagy and elaborated the relationship and mechanisms between autophagy and the metastasis of osteosarcoma cells.

7.
Sci Rep ; 12(1): 5654, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383226

RESUMO

This study aimed to evaluate the anti-pancreatic cancer effects of flavonoids in Plumula Nelumbinis. High-performance liquid chromatography/quadrupole time-of-flight mass spectrometry showed that apiin, rhoifolin, and vitexin were three principal components in total flavonoids derived from Plumula Nelumbinis, with vitexin being the most abundant component. Cell viability assay revealed that apiin, rhoifolin, and vitexin could inhibit proliferation of PANC-1 and ASPC-1, with rhoifolin showing the maximum inhibitory effect. Rhoifolin inhibited cell proliferation and promoted apoptosis of pancreatic cancer cells, which was associated with up-regulated JNK and p-JNK as well as down-regulated p-AKT. Rhoifolin also inhibited cell migration and invasion, and increased the antioxidant capacity in PANC-1 and ASPC-1. Besides, AKT activator (SC79) or JNK inhibitor (SP600125) effectively reversed the anticancer effects of rhoifolin in pancreatic cancer. Quantitative proteomics analysis showed that rhoifolin altered proteomic profiles in pancreatic cancer cells. Western blot analysis showed that rhoifolin down-regulated transforming growth factor beta 2 (TGF-ß2), the regulator of proteoglycan synthesis, with the concomitant down-regulation of phosphorylated SMAD family member 2 (SMAD2), the downstream effector of TGF-ß2. In conclusion, rhoifolin regulates the AKT/JNK/caspase-3 and TGF-ß2/SMAD2 signaling pathways, which may contribute to its anti-pancreatic cancer effects.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Dissacarídeos , Flavonoides , Glicosídeos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Proteômica , Proteínas Proto-Oncogênicas c-akt
8.
Adv Med Sci ; 67(2): 187-195, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35398779

RESUMO

PURPOSE: Sialic acid-bound immunoglobulin lectin 15 (Siglec-15) plays a crucial role in many kinds of tumors. The relationship between Siglec-15 and the prognosis of osteosarcoma patients and its role in the apoptosis and pyroptosis of osteosarcoma cells are not sufficiently understood. Our study aimed to investigate the function of Siglec-15 in osteosarcoma cells and its effect on tumor cell proliferation, apoptosis and pyroptosis. MATERIALS AND METHODS: The Siglec-15 expression in pathological sections of osteosarcoma patients was analyzed and the overall survival time related to the expression of Siglec-15 was further analyzed. Next, we detected the expression of Siglec-15 in osteosarcoma cells and downregulated the expression of Siglec-15 by small interfering RNA (siRNA). The proliferation, apoptosis and pyroptosis of osteosarcoma cells were studied by proliferation and apoptosis kits and Western blotting. Furthermore, the Siglec-15 signaling pathway was examined, which may be involved in the observed cellular effects. RESULTS: We demonstrated the expression of Siglec-15 in osteosarcoma cells. SiRNA-mediated downregulation of Siglec-15 was successful. We found that knockdown of Siglec-15 in osteosarcoma cell lines significantly inhibited proliferation while promoting apoptosis. Further investigation showed that the expression of proliferation-related proteins was downregulated and that apoptosis- and pyroptosis-related proteins were upregulated. In addition, we found that Siglec-15 may inhibit proliferation while inducing apoptosis and pyroptosis via the (Signal Transducer and Activator of Transcription 3) STAT3/Bcl-2 pathway in osteosarcoma. CONCLUSIONS: In this study, we demonstrated that the ablation of Siglec-15 in osteosarcoma inhibited proliferation and promoted apoptosis and pyroptosis by targeting the Siglec-15/STAT3/Bcl-2 pathway.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Ácido N-Acetilneuramínico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Piroptose , RNA Interferente Pequeno/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
9.
Front Oncol ; 10: 543562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014879

RESUMO

The survival rate of osteosarcoma, the most prevalent primary bone tumor, has not been effectively improved in the last 30 years. Hence, new treatments and drugs are urgently needed. Antiangiogenic therapy and immunotherapy have good antitumor effects in many kinds of tumors. It is hypothesized that there may be a synergistic effect between immune checkpoint inhibitors and antiangiogenic therapy. Nevertheless, its potential mechanism is still unclear. Vascular endothelial growth factor receptor-2 (VEGFR2) expression was detected by immunohistochemistry in 18 paired osteosarcoma tissues. Moreover, we investigated the effects of apatinib treatment and VEGFR2 knockdown on osteosarcoma as well as the relevant underlying mechanism. Immunohistochemistry assays showed that, compared with that in primary osteosarcoma, VEGFR2 expression was higher in lung metastases. VEGFR2 was positively correlated with PD-L2 expression in osteosarcoma lung metastasis. Transwell assays indicated that VEGFR2 inhibition reduced osteosarcoma cell metastatic abilities in vitro. We also demonstrated that VEGFR2 inhibition downregulated the STAT3 and RhoA-ROCK-LIMK2 pathways, thereby attenuating migration and invasion. Additionally, VEGFR2 inhibition targeted STAT3, through which it reduced PD-L2 expression in osteosarcoma cells. VEGFR2 inhibition markedly attenuated osteosarcoma lung metastatic ability in vivo. In this study, we presented the pro-metastatic functional mechanism of VEGFR2 in osteosarcoma. VEGFR2 inhibition exhibits antitumor effects through antiangiogenic effects and inhibition of immune escape, which possibly provides potential clinical treatment for metastatic osteosarcoma.

10.
J Nanobiotechnology ; 18(1): 151, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092576

RESUMO

BACKGROUND: Recent studies indicated that exosomal programmed death-ligand 1 (PD-L1) derived from cancers could induce immunosuppression and tumor pathogenesis. However, it is unclear how exosomes influence osteosarcoma (OS) progression and whether PD-L1 also exists in serum exosomes (Sr-exosomes) of patients with osteosarcoma. We examined serum exosomes from 70 OS patients, 9 patients with benign tumors and 22 healthy donors. OS-derived exosomes were functionally evaluated in vivo and in vitro. RESULTS: The characteristics of exosomes derived from OS patient serum and OS cell lines were confirmed by several methods. We found OS patients had a higher level of exosomal PD-L1 compared to healthy donors. Meanwhile, OS patients with pulmonary metastasis also showed a relatively higher level of exosomal PD-L1 than patients without metastasis. Next, bioinformatic analysis demonstrated that Sr-exosomes isolated from OS patients may involve in the important process of immune function and cancer pathogenesis for OS patients. Co-expression network centered with PD-L1 among Sr-exosomal differently expressed mRNA demonstrated exosomal N-cadherin had a close relationship with exosomal PD-L1 expression. Then, we confirmed higher level of Sr-exosomal N-cadherin in OS patients with pulmonary metastasis compared to ones without metastasis. Furthermore, we elucidated osteosarcoma-derived exosomes and exosomal-PD-L1 promoted the pulmonary metastasis in metastatic models. ROC (Receiver Operating Characteristic Curve) analysis showed AUC (Area Under Curve) of 0.823 for exosomal PD-L1, 0.806 for exosomal N-cadherin and 0.817 for exosomal N-cadherin/E-cadherin to distinguish OS patients with pulmonary metastasis from ones without metastasis. CONCLUSIONS: Osteosarcoma stimulates pulmonary metastasis by releasing exosomes, that carry PD-L1 and N-cadherin. Detection of exosomal PD-L1 and N-cadherin from serum of OS patients may predict pulmonary metastasis progression for OS patients.


Assuntos
Antígeno B7-H1/sangue , Biomarcadores Tumorais/sangue , Caderinas/sangue , Exossomos/química , Neoplasias Pulmonares/diagnóstico , Metástase Neoplásica/diagnóstico , Osteossarcoma/metabolismo , Animais , Antígeno B7-H1/genética , Caderinas/genética , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Biologia Computacional , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Distribuição Tecidual , Cicatrização
11.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376724

RESUMO

BACKGROUND: Results of our previous study showed high objective response but short-term activity of apatinib in advanced osteosarcoma. We aimed to investigate the activity of apatinib in combination with camrelizumab in patients with inoperable high-grade osteosarcoma progressing after chemotherapy. METHODS: This open-label, phase 2 trial was conducted at Peking University People's Hospital. We enrolled patients with advanced osteosarcoma progressed after chemotherapy. Patients received 500 mg apatinib orally once daily plus 200 mg camrelizumab by intravenous infusion every 2 weeks until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival (PFS) and clinical benefit rate at 6 months, which were based on RECIST V.1.1. RESULTS: 43 patients were enrolled between January 25 and September 4, 2018. With median follow-up time of 48.3 (Q1, Q3, 30.6, 66.6) weeks, 13 (30.23%, 95% CI 17.2%, 40.1%) of 43 patients were progression free at 6 months and the 6-month PFS rate was 50.9% (95% CI 34.6%, 65.0%). Until final follow-up, the objective response rate was 20.9% (9/43) and two patients with durable disease control were observed. Patients with programmed cell death 1 ligand-1 (PD-L1) tumor proportion score ≥5% and pulmonary metastases tended to have a longer PFS in comparison to the others (p=0.004 and 0.017, respectively). Toxic effects led to dose reductions, or interruptions, or both in 24 (55.8%) of 43 patients and permanent discontinuation in 4 (9.3%) patients. There were no treatment-related deaths. CONCLUSIONS: Although the combination of apatinib and camrelizumab seemed to prolong PFS in comparison to single agent apatinib in treating advanced osteosarcoma, it did not reach the prespecified target of 6-month PFS of 60% or greater. Overexpression of PD-L1 and the presence of pulmonary metastases only were associated with longer PFS. TRIAL REGISTRATION NUMBER: NCT03359018.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Piridinas/administração & dosagem , Administração Oral , Adolescente , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/mortalidade , Criança , Progressão da Doença , Esquema de Medicação , Feminino , Seguimentos , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Osteossarcoma/diagnóstico , Osteossarcoma/imunologia , Osteossarcoma/mortalidade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Piridinas/efeitos adversos , Adulto Jovem
12.
Artif Cells Nanomed Biotechnol ; 47(1): 3359-3367, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31387405

RESUMO

Background: Osteosarcoma (OS) is the most prevailing primary bone tumour and the third prevalent tumour in children and adolescents. Despite advanced treatments, the survival rate of OS has not been effectively improved. Here, we intended to investigate the functional impacts of circ-ITCH on OS. Methods: Circ-ITCH expression in OS tissues and cells was evaluated utilizing qRT-PCR. Viability and proliferation of MG63 and Saos-2 cells were determined by utilizing CCK-8 assay and BrdU assay. Transwell assay was utilized to investigate migration and invasion. Western blot was utilized to distinguish apoptosis and metastasis-related proteins expression. Sequentially, the above-mentioned parameters were reassessed when up-regulating miR-22. Results: Circ-ITCH was low expressed in OS tissues and cells. Overexpressing circ-ITCH facilitated apoptosis and repressed viability, proliferation, migration and invasion in MG63 and Saos-2 cells. MiR-22 expression was reduced by overexpressing circ-ITCH. The decline of viability, proliferation, migration and invasion made by overexpressing circ-ITCH was alleviated by up-regulating miR-22. Conclusively, circ-ITCH suppressed PTEN/PI3K/AKT and SP-1 pathways via down-regulating miR-22. Conclusion: Circ-ITCH took effects on apoptosis, viability, proliferation, migration and invasion through restraining PTEN/PI3K/AKT and SP-1 pathways via down-regulating miR-22 in MG63 and Saos-2 cells. Highlights Low expression of circ-ITCH is observed in osteosarcoma tissues and cell lines; Overexpression circ-ITCH suppresses miR-22 expression; Circ-ITCH promotes proliferation and represses apoptosis by up-regulating miR-22; Circ-ITCH promotes migration and invasion by up-regulating miR-22; Circ-ITCH activates PTEN/PI3K/AKT and SP-1 pathways by up-regulating miR-22.


Assuntos
Neoplasias Ósseas/patologia , MicroRNAs/genética , Osteossarcoma/patologia , RNA Circular/genética , Apoptose/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Invasividade Neoplásica/genética , Osteossarcoma/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
13.
Cell Death Dis ; 10(4): 261, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886151

RESUMO

Known as co-stimulatory molecule, programmed death ligand-2 (PD-L2) contributes to T-cell exhaustion by interaction with programmed death-1 (PD-1) receptor, but its tumor cell-intrinsic signal effects have been little investigated. PD-L2 expression was detected by immunohistochemistry in 18 pairs of primary osteosarcoma tissues and matching lung metastasis tissues. We also investigated the effects of PD-L2 knockdown on osteosarcoma both in vitro and in vivo. In our study, PD-L2 expression was elevated in lung metastases compared with primary osteosarcoma according to an immunohistochemistry assay. Wound-healing and transwell assays revealed that PD-L2 knockdown  leaded to inhibition of migration and invasion of human osteosarcoma cells in vitro. Mechanistically, we demonstrated that PD-L2 knockdown attenuated migration and invasion by inactivating RhoA-ROCK-LIMK2 signaling, suppressing epithelial-mesenchymal transition (EMT), and inhibiting autophagy by decreasing beclin-1 expression. In support of these observations, beclin-1 knockdown also inhibited activation of the RhoA-ROCK-LIMK2 pathway, leading to autophagy inhibition-induced blockade of migration and invasion. Depletion of PD-L2 in KHOS cells markedly weakens pulmonary metastatic potential in vivo by orthotopic transplantation of nude mice. Our study reveals a pro-metastatic functional mechanism for PD-L2 in osteosarcoma. Furthermore, we demonstrate a regulatory role for PD-L2 on autophagy, as well as a relationship between autophagy and metastasis in osteosarcoma, which may represent a potential therapeutic target for osteosarcoma.


Assuntos
Autofagia/genética , Neoplasias Ósseas/metabolismo , Neoplasias Pulmonares/secundário , Osteossarcoma/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Neoplasias Ósseas/genética , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Quinases Lim/genética , Quinases Lim/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteossarcoma/genética , Osteossarcoma/patologia , Proteína 2 Ligante de Morte Celular Programada 1/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
14.
Cancer Lett ; 440-441: 116-125, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343113

RESUMO

Osteosarcoma (OS) is a common, malignant musculoskeletal tumor in young people. Neoadjuvant chemotherapy has improved the survival of osteosarcoma patients but with limited benefit due to metastasis. Tumor-associated macrophages (TAMs) are involved in various mechanisms of tumor biology, which include oncogenesis, drug resistance, and tumor immune escape, as well as tumor metastasis. In this study, we proved that TAMs possess the ability to promote OS cell migration and invasion by upregulating COX-2, MMP9, and phosphorylated STAT3 and to induce the epithelial-mesenchymal transition (EMT). This evidence has also been verified in a tumor-bearing animal model, and in OS patients. Furthermore, we observed the anti-metastasis effect of COX-2 inhibition by repressing COX-2 expression, EMT-activating transcription factors and the STAT3 pathway, both in vitro and in vivo. We propose that TAMs promote OS metastasis and invasion by activating the COX-2/STAT3 axis and EMT. These findings suggest that TAMs and COX-2 may be potential targets for future anti-metastasis therapy.


Assuntos
Neoplasias Ósseas/patologia , Ciclo-Oxigenase 2/metabolismo , Neoplasias Pulmonares/secundário , Macrófagos/patologia , Osteossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Adulto , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Transição Epitelial-Mesenquimal , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteossarcoma/metabolismo , Adulto Jovem
15.
J Exp Clin Cancer Res ; 37(1): 135, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970115

RESUMO

BACKGROUND: Expression of COP9 signalosome subunit 3 (COPS3), an oncogene overexpressed in osteosarcoma, has been demonstrated to be significantly correlated with tumor metastasis. However, the underlying mechanism by which COPS3 promotes metastasis of osteosarcoma and its role in autophagy remain unknown. METHODS: The expression of COPS3 was detected in primary osteosarcoma tissues and matching lung metastasis tissues by immunohistochemistry (IHC). The effect of COPS3 on the metastasis of osteosarcoma cells was investigated by transwell, wound healing assays and animal studies. Indicated proteins was analyzed by western blotting when COPS3 was knockdown or overexpressed. The COPS3 Interacting protein was determined by immunoprecipitation assay. The relationship between COPS3 and autophagy was detected by western blotting and immunofluorescence. RESULTS: We found that knockdown of COPS3 significantly reduced the lung metastasis of osteosarcoma cells in a mouse model, coinciding with downregulation of mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) signaling. The silencing of COPS3 also inhibited the epithelial-mesenchymal transition (EMT) through the 90 kDa ribosomal S6 kinases (RSK), a family of signal transduction proteins downstream of MEK/ERK. Reciprocal immunoprecipitation assays revealed that COPS3 directly interacts with Raf-1, an upstream regulator of MEK/ERK. Surprisingly, Beclin1, an important autophagic protein, appeared in the COPS3-immunoprecipitates, along with the autophagic markers LC3-I and LC3-II. Loss of COPS3 completely inhibited H2O2-induced autophagic flux and reduced Beclin1 expression. Additionally, autophagy inhibitor or silencing of Beclin1 both decreased cell metastasis. CONCLUSIONS: Taken together, these data reveal a novel function of COPS3 in the regulation of autophagy and highlight the relationship between autophagy and metastasis in osteosarcoma cells.


Assuntos
Autofagia/genética , Proteína Beclina-1/genética , Complexo do Signalossomo COP9/genética , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/genética , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas/genética , Animais , Proteína Beclina-1/metabolismo , Complexo do Signalossomo COP9/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , MAP Quinases Reguladas por Sinal Extracelular , Feminino , Inativação Gênica , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Hematol Oncol ; 11(1): 37, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530070

RESUMO

The original article [1] contained an error in Table 1 whereby the 'Positive' column in the 'PD-L1' Tumor type group of columns was mistakenly included at the beginning of the 'PD-L2' Tumor type group of columns.

17.
J Hematol Oncol ; 11(1): 16, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409495

RESUMO

BACKGROUND: Immune checkpoint inhibitors have led to a breakthrough in solid tumor immunotherapy, but related studies on musculoskeletal tumors are few, especially for PD-L2. METHODS: We examined expression of three molecular effectors of the PD-1 axis in 234 patients with musculoskeletal tumors, including osteosarcoma, chondrosarcoma, synovial sarcoma, and giant cell tumor. Survival analyses and potential mechanisms were investigated in osteosarcoma per the Gene Expression Omnibus (GEO) and immunohistochemistry analyses. In vivo, humanized mice were used to evaluate the effect of nivolumab on osteosarcoma. RESULTS: PD-L1, PD-L2, and PD-1 expression levels were significantly different between the histologic types of the musculoskeletal tumors. For osteosarcoma, PD-L1 was negatively correlated with prognosis, while PD-1 had a negative correlation tendency with overall survival (OS). Meanwhile, PD-L2 had a positive correlation trend with OS. Nivolumab inhibited osteosarcoma metastasis in humanized mice by increasing CD4+ and CD8+ lymphocytes and the cytolytic activity of CD8 lymphocytes in the lung but did not affect primary osteosarcoma growth. CONCLUSION: We systematically detected the expression patterns of PD-L1, PD-L2, and PD-1 in musculoskeletal tumors for the first time and demonstrated the prognostic roles and underlying mechanisms of PD-1 axis in osteosarcoma. Furthermore, PD-1 blockade could effectively control osteosarcoma pulmonary metastasis in vivo. Therefore, the PD-1 axis may be a potential immunotherapeutic target for metastatic osteosarcoma.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias de Tecido Conjuntivo/tratamento farmacológico , Nivolumabe/uso terapêutico , Osteossarcoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/análise , Adulto , Animais , Antígeno B7-H1/análise , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Condrossarcoma/tratamento farmacológico , Condrossarcoma/patologia , Feminino , Tumores de Células Gigantes/tratamento farmacológico , Tumores de Células Gigantes/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias de Tecido Conjuntivo/patologia , Osteossarcoma/patologia , Proteína 2 Ligante de Morte Celular Programada 1/análise , Sarcoma Sinovial/tratamento farmacológico , Sarcoma Sinovial/patologia , Adulto Jovem
18.
Biochem Biophys Res Commun ; 495(2): 1695-1701, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29225166

RESUMO

The cure rate of osteosarcoma has not improved in the past 30 years. The new treatments and drugs is urgently needed, especially for metastatic osteosarcoma. Anti-angiogenesis therapy and immunotherapy has got promising anti-tumor effects in various tumors. It is hypothesised that combining checkpoint inhibitor immunotherapies with antiangiogenic treatment may have a synergistic effect and enhance the efficacy of both treatments. However, its underlying mechanism remain largely uninvestigated. To investigate the clinical significance of vascular endothelial growth factor receptor-2 (VEGFR2) and programmed death ligand-1 (PD-L1) in osteosarcoma, we analyzes their expression levels in 93 osteosarcoma specimens by immunohistochemistry. Meanwhile, we analyzes their correlation with the metastatic behavior and overall survival (OS). We also investigate the effects of Apatinib on migration and invasion of osteosarcoma cells and its underlying mechanism in vitro and in vivo. In our study, the positive rates of the VEGFR2 and PD-L1 expression are 64.5% (60/93) and 35.5% (33/93), respectively. A significant correlation is detected between VEGFR2 and PD-L1 expression (P = 0.009). Receiver-operating characteristic (ROC) curves analysis indicates the predictive value of the two markers in tumor metastasis, and both PD-L1 and VEGFR2 are negatively correlated with OS. Transwell assays reveals that VEGFR2 inhibition attenuates migration and invasion of osteosarcoma cells. Mechanistically, we demonstrate that Apatinib attenuates migration and invasion by suppressing epithelial-mesenchymal transition (EMT) and inactivating STAT3. Additionally, Apatinib reduces PD-L1 expression in osteosarcoma cells. Apatinib markedly weakens pulmonary metastatic potential of osteosarcoma in vivo. In conclusion, our study reveals a pro-metastatic functional mechanism for VEGFR2 in osteosarcoma. Furthermore, we demonstrate that Apatinib exerts anti-tumor effect not only through antiangiogenic effect, but also via suppressing immune escape, which may represent a potential therapeutic target for metastatic osteosarcoma.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Piridinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/prevenção & controle , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncotarget ; 8(35): 58625-58641, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938584

RESUMO

Bone morphogenetic protein receptor 2 (BMPR2) has been identified in several types of cancer. However, its role in osteosarcoma is largely unknown. We systematically investigated the role of BMPR2 in osteosarcoma cell lines, human tissue samples and xenograft models. The relationship between BMPR2 expression and osteosarcoma patients' survival was investigated by bioinformatics and clinical data. Wound healing assay and transwell assay were used to detect the changes of cell migration and invasion ability after BMPR2 transfection. In addition, downstream phosphoproteins were analyzed by iTRAQ-based phosphoproteomic analysis and verified by western blotting. In vivo, the effects of BMPR2 on the growth, formation and metastasis of 143B cells were observed by orthotopic transplantation of nude mice. Here, we demonstrated that BMPR2 expression was elevated in a majority of osteosarcoma tissues compared with normal bone tissue. Osteosarcoma patients with greater BMPR2 expressing level showed a poor overall survival. The depletion of BMPR2 in 143B cells markedly reduced the invasive capacity in vitro and metastatic potential in vivo. Mechanistically, we found that LIM domain kinase 2 (LIMK2) was phosphorylated and activated by BMPR2 and that this event was crucial for activation of the BMPR2-mediated signal pathway in osteosarcoma cells. Additionally, we demonstrated that BMPR2 could active LIMK2 through the RhoA/ROCK pathway and could also interact with LIMK2 directly. Taken together, our study revealed that BMPR2 functions as a prometastatic oncogene in vitro and in vivo with the activation of the RhoA-ROCK-LIMK2 pathway and may represent a potential therapeutic target for osteosarcoma.

20.
Cell Death Dis ; 8(8): e3015, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837148

RESUMO

The cure rate of osteosarcoma has not improved in the past 30 years. The search for new treatments and drugs is urgently needed. Apatinib is a high selectivity inhibitor of vascular endothelial growth factor receptor-2 (VEGFR2) tyrosine kinase, exerting promising antitumoral effect in various tumors. The antitumor effect of Apatinib in human osteosarcoma has never been reported. We investigated the effects of Apatinib in osteosarcoma in vitro and in vivo. Osteosarcoma patients with high levels of VEGFR2 have poor prognosis. Apatinib can inhibit cell growth of osteosarcoma cells. In addition to cycle arrest and apoptosis, Apatinib induces autophagy. Interestingly, inhibition of autophagy increased Apatinib-induced apoptosis in osteosarcoma cells. Immunoprecipitation confirmed direct binding between VEGFR2 and signal transducer and activator of transcription 3 (STAT3). Downregulation of VEGFR2 by siRNA resulted in STAT3 inhibition in KHOS cells. VEGFR2 and STAT3 are inhibited by Apatinib in KHOS cells, and STAT3 act downstream of VEGFR2. STAT3 and BCL-2 were downregulated by Apatinib. STAT3 knockdown by siRNA reinforced autophagy and apoptosis induced by Apatinib. BCL-2 inhibits autophagy and was apoptosis restrained by Apatinib too. Overexpression of BCL-2 decreased Apatinib-induced apoptosis and autophagy. Apatinib repressed the expression of STAT3 and BCL-2 and suppressed the growth of osteosarcoma in vivo. To sum up, deactivation of VEGFR2/STAT3/BCL-2 signal pathway leads to Apatinib-induced growth inhibition of osteosarcoma.


Assuntos
Antineoplásicos/uso terapêutico , Osteossarcoma/tratamento farmacológico , Piridinas/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Antineoplásicos/farmacologia , Apoptose , Autofagia/efeitos dos fármacos , Humanos , Osteossarcoma/patologia , Piridinas/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA