Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 112: 109225, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095950

RESUMO

Osteoarthritis (OA) is the most prevalent degenerative whole-joint disease characterized by cartilage degeneration, synovial hyperplasia, osteophyte formation, and subchondral bone sclerosis. Currently there are no disease-modifying treatments available for OA because its etiology and pathogenesis are largely unknown. Here we report that a natural carboxylic polyether ionophore that is used as an anti-tumor drug, salinomycin (SAL), may be a promising therapeutic drug for OA in the future. We found that SAL showed no cytotoxicity on mouse chondrocytes and displayed a protective effect against interleukin-1ß (IL-1ß), in cultured mouse chondrocytes and cartilage explants. Treatment with low SAL concentrations directly upregulated the anabolism factors collagen II and aggrecan, while it inhibited the catabolic factors matrix metalloproteinase-13 (MMP13) and metalloproteinase with thrombospondin motifs-5 (ADAMTS5) to protect against extracellular matrix (ECM) degradation, and also suppressed inflammatory responses in mouse chondrocytes. Furthermore, SAL reduced the severity of OA-associated changes and delayed cartilage destruction, subchondral bone sclerosis, and osteophyte formation in a destabilized medial meniscus (DMM) surgery-induced mouse OA model. Mechanistically, a low SAL concentration induced anabolism and inhibited catabolism in chondrocytes via inhibiting Lrp6 phosphorylation and Wnt/ß-catenin signaling. Our results suggested that SAL may serve as a potential disease-modifying therapeutic against OA pathogenesis.


Assuntos
Osteoartrite , Osteófito , Via de Sinalização Wnt , Animais , Camundongos , Agrecanas/metabolismo , beta Catenina/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Ionóforos/metabolismo , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Metaloproteinase 13 da Matriz/metabolismo , Meniscos Tibiais/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteófito/metabolismo , Osteófito/patologia , Esclerose/metabolismo , Esclerose/patologia , Trombospondinas/metabolismo , Trombospondinas/farmacologia , Trombospondinas/uso terapêutico
2.
Int J Bioprint ; 7(4): 405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805594

RESUMO

The rapid development of scaffold-based bone tissue engineering strongly relies on the fabrication of advanced scaffolds and the use of newly discovered functional drugs. As the creation of new drugs and their clinical approval often cost a long time and billions of U.S. dollars, producing scaffolds loaded with repositioned conventional drugs whose biosafety has been verified clinically to treat critical-sized bone defect has gained increasing attention. Carfilzomib (CFZ), an approved clinical proteasome inhibitor with a much fewer side effects, is used to replace bortezomib to treat multiple myeloma. It is also reported that CFZ could enhance the activity of alkaline phosphatase and increase the expression of osteogenic transcription factors. With the above consideration, in this study, a porous CFZ/ß-tricalcium phosphate/poly lactic-co-glycolic acid scaffold (designated as "cytidine triphosphate [CTP]") was produced through cryogenic three-dimensional (3D) printing. The hierarchically porous CTP scaffolds were mechanically similar to human cancellous bone and can provide a sustained CFZ release. The implantation of CTP scaffolds into critical-sized rabbit radius bone defects improved the growth of new blood vessels and significantly promoted new bone formation. To the best of our knowledge, this is the first work that shows that CFZ-loaded scaffolds could treat nonunion of bone defect by promoting osteogenesis and angiogenesis while inhibiting osteoclastogenesis, through the activation of the Wnt/ß-catenin signaling. Our results suggest that the loading of repositioned drugs with effective osteogenesis capability in advanced bone tissue engineering scaffold is a promising way to treat critical-sized defects of a long bone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA