Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 40(9): 1388-1393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35379962

RESUMO

Delivery and optimization of prime editors (PEs) have been hampered by their large size and complexity. Although split versions of genome-editing tools can reduce construct size, they require special engineering to tether the binding and catalytic domains. Here we report a split PE (sPE) in which the Cas9 nickase (nCas9) remains untethered from the reverse transcriptase (RT). The sPE showed similar efficiencies in installing precise edits as the parental unsplit PE3 and no increase in insertion-deletion (indel) byproducts. Delivery of sPE to the mouse liver with hydrodynamic injection to modify ß-catenin drove tumor formation with similar efficiency as PE3. Delivery with two adeno-associated virus (AAV) vectors corrected the disease-causing mutation in a mouse model of type I tyrosinemia. Similarly, prime editing guide RNAs (pegRNAs) can be split into a single guide RNA (sgRNA) and a circular RNA RT template to increase flexibility and stability. Compared to previous sPEs, ours lacks inteins, protein-protein affinity modules and nuclease-sensitive pegRNA extensions, which increase construct complexity and might reduce efficiency. Our modular system will facilitate the delivery and optimization of PEs.


Assuntos
RNA Circular , Tirosinemias , Animais , Sistemas CRISPR-Cas , Desoxirribonuclease I/genética , Edição de Genes , Camundongos , RNA Circular/genética , RNA Guia de Cinetoplastídeos/genética , DNA Polimerase Dirigida por RNA/genética , Tirosinemias/genética
2.
Mol Ther ; 30(3): 1343-1351, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998953

RESUMO

Prime editor (PE) has tremendous promise for gene therapy. However, it remains a challenge to deliver PE (>6.3 kb) in vivo. Although PE can be split into two fragments and delivered using dual adeno-associated viruses (AAVs), choice of split sites within Cas9-which affects editing efficiency-is limited due to the large size of PE. Furthermore, overexpressing reverse transcriptase in mammalian cells might disrupt translation termination via its RNase H domain. Here, we developed a compact PE without the RNase H domain that showed editing comparable with full-length PE. With compact PE, we used a Cas9 split site (Glu 573) that supported robust editing in cells (up to 93% of full-length PE) and in mouse liver. We then demonstrated that split-cPE573 delivered by dual-AAV8 efficiently mediated a 3-bp TGA insertion in the Pcsk9 gene in mouse liver. Compact PE without the RNase H domain abolished its binding to peptidyl release factor 1 (eRF1) and mitigated the stop codon readthrough effect observed with full-length PE. This study identifies a compact PE with a flexible split design to advance utility of prime editing in vivo.


Assuntos
Edição de Genes , Pró-Proteína Convertase 9 , Animais , Fígado , Mamíferos , Camundongos , Pró-Proteína Convertase 9/genética , DNA Polimerase Dirigida por RNA , Ribonuclease H
3.
Nat Commun ; 12(1): 2121, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837189

RESUMO

Prime editors (PEs) mediate genome modification without utilizing double-stranded DNA breaks or exogenous donor DNA as a template. PEs facilitate nucleotide substitutions or local insertions or deletions within the genome based on the template sequence encoded within the prime editing guide RNA (pegRNA). However, the efficacy of prime editing in adult mice has not been established. Here we report an NLS-optimized SpCas9-based prime editor that improves genome editing efficiency in both fluorescent reporter cells and at endogenous loci in cultured cell lines. Using this genome modification system, we could also seed tumor formation through somatic cell editing in the adult mouse. Finally, we successfully utilize dual adeno-associated virus (AAVs) for the delivery of a split-intein prime editor and demonstrate that this system enables the correction of a pathogenic mutation in the mouse liver. Our findings further establish the broad potential of this genome editing technology for the directed installation of sequence modifications in vivo, with important implications for disease modeling and correction.


Assuntos
Carcinogênese/genética , Edição de Genes/métodos , Neoplasias/genética , RNA Guia de Cinetoplastídeos/genética , Alelos , Animais , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animais de Doenças , Células HEK293 , Células HeLa , Humanos , Camundongos , Neoplasias/patologia , Transfecção
4.
Biol Reprod ; 100(6): 1673-1685, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087039

RESUMO

Family with sequence similarity 46, member C (FAM46C) is a highly conserved non-canonical RNA polyadenylation polymerase that is abundantly expressed in human and mouse testes and is frequently mutated in patients with multiple myeloma. However, its physiological role remains largely unknown. In this study, we found that FAM46C is specifically localized to the manchette of spermatids in mouse testes, a transient microtubule-based structure mainly involved in nuclear shaping and intra-flagellar protein traffic. Gene knockout of FAM46C in mice resulted in male sterility, characterized by the production of headless spermatozoa in testes. Sperm heads were intermittently found in the epididymides of FAM46C knockout mice, but their fertilization ability was severely compromised based on the results of intracytoplasmic sperm injection assays. Interestingly, our RNA-sequencing analyses of FAM46C knockout testes revealed that mRNA levels of only nine genes were significantly altered compared to wild-type ones (q < 0.05). When considering alternate activities for FAM46C, in vitro assays demonstrated that FAM46C does not exhibit protein kinase or AMPylation activity against general substrates. Together, our data show that FAM46C in spermatids is a novel component in fastening the sperm head and flagellum.


Assuntos
Flagelos/fisiologia , Polinucleotídeo Adenililtransferase/fisiologia , Cabeça do Espermatozoide/fisiologia , Espermátides/fisiologia , Espermatogênese/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Flagelos/metabolismo , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polinucleotídeo Adenililtransferase/genética , Gravidez , Cabeça do Espermatozoide/metabolismo , Espermátides/citologia , Espermatozoides/fisiologia
5.
Development ; 145(11)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848638

RESUMO

The postmeiotic development of male germ cells, also known as spermiogenesis, features the coordinated expression of a large number of spermatid-specific genes. However, only a limited number of key transcription factors have been identified and the underlying regulatory mechanisms remain largely unknown. Here, we report that SOX30, the most-divergent member of the Sry-related high-motility group box (SOX) family of transcription factors, is essential for mouse spermiogenesis. The SOX30 protein was predominantly expressed in spermatids, while its transcription was regulated by retinoic acid and by MYBL1 before and during meiosis. Sox30 knockout mice arrested spermiogenesis at step 3 round spermatids, which underwent apoptosis and abnormal chromocenter formation. We also determined that SOX30 regulated the expression of hundreds of spermatid-specific protein-coding and long non-coding RNA genes. SOX30 bound to the proximal promoter of its own gene and activated its transcription. These results reveal SOX30 as a novel key regulator of spermiogenesis that regulates its own transcription to enforce and activate this meiotic regulatory pathway.


Assuntos
Regulação da Expressão Gênica/genética , Fatores de Transcrição SOX/genética , Espermátides/metabolismo , Espermatogênese/fisiologia , Animais , Apoptose/fisiologia , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myb/genética , Transativadores/genética , Tretinoína/metabolismo
6.
Stem Cells Dev ; 27(10): 692-703, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29631477

RESUMO

Cultured mouse spermatogonial stem cells (SSCs), also known as germline stem cells (GSCs), revert back to pluripotent state either spontaneously or upon being modified genetically. However, the reprogramming efficiencies are low, and the underlying mechanism remains poorly understood. In the present study, we conducted transcriptomic analysis and found that many transcription factors and epigenetic modifiers were differentially expressed between GSCs and embryonic stem cells. We failed in reprogramming GSCs to pluripotent state using the Yamanaka 4 Factors, but succeeded when Nanog and Tet1 were included. More importantly, reprogramming was also achieved with Nanog alone in a p53-deficient GSC line with an efficiency of 0.02‰. These GSC-derived-induced pluripotent stem cells possessed in vitro and in vivo differentiation abilities despite the low rate of chimera formation, which might be caused by abnormal methylation in certain paternally imprinted genes. Together, these results show that GSCs can be reprogrammed to pluripotent state via multiple avenues and contribute to our understanding of the mechanisms of GSC reprogramming.


Assuntos
Reprogramação Celular/fisiologia , Proteína Homeobox Nanog/metabolismo , Células-Tronco Pluripotentes/metabolismo , Espermatogônias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Metilação de DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Espermatogônias/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA