Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 28(1): 64, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38158464

RESUMO

OBJECTIVES: This study aimed to investigate the functions of 19 types of Wnt ligands during the process of osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs), with particular attention to WNT3A and WNT4. MATERIALS AND METHODS: The expression levels of 19 types of Wnt ligands were examined using real-time quantitative polymerase chain reaction (real-time qPCR) during hPDLSCs osteogenic differentiation at 7, 10, and 14 days. Knockdown of WNT3A and WNT4 expression was achieved using adenovirus vectors, and conditioned medium derived from WNT3A and WNT4 overexpression plasmids was employed to investigate their roles in hPDLSCs osteogenesis. Osteogenic-specific genes were analyzed using real-time qPCR. Alkaline phosphatase (ALP) and alizarin red S activities and staining were employed to assess hPDLSCs' osteogenic differentiation ability. RESULTS: During hPDLSCs osteogenic differentiation, the expression of 19 types of Wnt ligands varied, with WNT3A and WNT4 showing significant upregulation. Inhibiting WNT3A and WNT4 expression hindered hPDLSCs' osteogenic capacity. Conditioned medium of WNT3A promoted early osteogenic differentiation, while WNT4 facilitated late osteogenesis slightly. CONCLUSION: Wnt ligands, particularly WNT3A and WNT4, play an important role in hPDLSCs' osteogenic differentiation, highlighting their potential as promoters of osteogenesis. CLINICAL RELEVANCE: Given the challenging nature of alveolar bone regeneration, therapeutic strategies that target WNT3A and WNT4 signaling pathways offer promising opportunities. Additionally, innovative gene therapy approaches aimed at regulating of WNT3A and WNT4 expression hold potential for improving alveolar bone regeneration outcomes.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Osteogênese/genética , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco , Diferenciação Celular/genética , Células Cultivadas
2.
BMC Oral Health ; 23(1): 329, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237299

RESUMO

BACKGROUND: The cadherin-4 gene (CDH4), a member of the cadherin family genes, encodes R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. The function of CDH4 in OSCC (oral squamous cell carcinoma) is unknown. MATERIALS AND METHODS: We use the Cancer Genome Atlas (TCGA) database to find the expression of CDH4 in OSCC is more than normal tissue. Our tissue samples also confirmed that CDH4 gene was highly expressed in OSCC. The related cell function assay detected that CDH4 promotes the ability of cell proliferation, migration, self-renewal and invasion. Cell staining experiment confirmed that the change of CDH4 expression would change the cell mortality. The western blot of GPX4 (glutathione-dependent peroxidase-4), GSH (reduced glutathione) test assay and MDA(Malondialdehyde) test assay show that the expression of CDH4 may resist the sensitivity of ferropotosis in OSCC. RESULTS: CDH4 was upregulated in OSCC samples and was correlation with poor survival of patients. High expression of CDH4 effectively promotes the proliferation, mobility of OSCC cells and reduce the sensitivity of OSCC cells to ferroptosis. CDH4 is positively correlated with EMT pathway genes, negatively correlated with fatty acid metabolism pathway genes and peroxisome pathway genes, and positively correlated with ferroptosis suppressor genes in OSCC. CONCLUSIONS: These results indicate that CDH4 may play a positive role in tumor progression and resistance ferroptosis and may be a potential therapeutic target for OSCC.


Assuntos
Caderinas , Ferroptose , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Caderinas/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-35165064

RESUMO

OBJECTIVE: The objective of this study was to evaluate CELSR3 expression and explore its potential mechanism in oral squamous cell carcinoma. STUDY DESIGN: CELSR3 mRNA expression was analyzed using The Cancer Genome Atlas (TCGA) database. CELSR3 protein expression in 135 surgical oral squamous cell carcinoma specimens was observed by immunohistochemical staining. Staining results were used to investigate the association between CELSR3 expression and clinicopathologic characteristics and prognosis. Bioinformatics analyses were used to explore the potential mechanism of CELSR3 in head and neck squamous cell carcinoma. RESULTS: CELSR3 mRNA expression was upregulated in patients with head and neck squamous cell carcinoma in the TCGA head and neck squamous cell carcinoma data set. Increased CELSR3 protein expression was associated with perineural invasion and poor clinical outcomes in patients with oral squamous cell carcinoma. Bioinformatics analyses revealed that CELSR3 is involvement in axonogenesis, neuron migration, and cell-cell adhesion, all of which are involved in the process of perineural invasion. CONCLUSION: CELSR3 may play a pro-oncogenic role in oral squamous cell carcinoma and can predict perineural invasion and poor survival. CELSR3 may be involved in oral squamous cell carcinoma progression by modulating perineural invasion.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Caderinas , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica , Prognóstico , RNA Mensageiro/metabolismo , Receptores de Superfície Celular , Carcinoma de Células Escamosas de Cabeça e Pescoço
4.
J Nutr Biochem ; 99: 108843, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407449

RESUMO

Epigallocatechin-3-gallate (EGCG), the main active ingredient of green tea, exhibits low toxic side effect and versatile bioactivities, and its anti-cancer effect has been extensively studied. Most of the studies used cancer cell lines and xenograft models. However, whether EGCG can prevent tumor onset after cancer-associated mutations occur is still controversial. In the present study, Krt14-cre/ERT-Kras transgenic mice were developed and the expression of K-RasG12D was induced by tamoxifen. Two weeks after induction, the K-Ras mutant mice developed exophytic tumoral lesions on the lips and tongues, with significant activation of Notch signaling pathway. Administration of EGCG effectively delayed the time of appearance, decreased the size and weight of tumoral lesions, relieved heterotypic hyperplasia of tumoral lesions, and prolonged the life of the mice. The Notch signaling pathway was significantly inhibited by EGCG in the tumoral lesions. Furthermore, EGCG significantly induced cell apoptosis and inhibited the proliferation of tongue cancer cells by blocking the activation of Notch signaling pathway. Taken together, these results indicate EGCG as an effective chemotherapeutic agent for tongue cancer by targeting Notch pathway.


Assuntos
Antineoplásicos/administração & dosagem , Catequina/análogos & derivados , Neoplasias Labiais/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Receptores Notch/metabolismo , Neoplasias da Língua/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Camellia sinensis/química , Catequina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Labiais/genética , Neoplasias Labiais/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Onco Targets Ther ; 14: 4211-4222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295163

RESUMO

PURPOSE: CDH11, as a member of cadherins, mediates homotypic cell adhesion. Some studies have shown that CDH11 plays an important role in the development of tumors, especially in the processes of tumor invasion and metastasis. While features of CDH11 in tongue squamous cell carcinoma (TSCC) are still indeterminate, the purpose of the present study is to explore the role of CDH11 in TSCC. METHODS: The expression of cadherin gene in a TSCC cell line with high metastatic potential (LN4) and the parental CAL27 were examined both in the TCGA database and in collected clinical samples, further verified by quantitative real-time PCR. The effects of CDH11 on the proliferation, apoptosis, migration, invasion and adhesion were tested in appropriate ways after CDH11 was overexpressed in TSCC cells. RESULTS: Among the 22 cadherin genes, CDH11 was one of the most obviously inhibited genes in LN4 cells as compared with the parental cells. Overexpression of CDH11 did not show a significant effect on cell proliferation, apoptosis, stemness, migration and invasion ability of TSCC cells themselves, but it increased the adhesion of TSCC cells with human oral epithelial cells and decreased their ability to pass through human oral epithelial cells (HOECs) for migration. CONCLUSION: The results indicated that CDH11 plays as a tumor suppressor in tongue squamous cell carcinoma by inhibiting the invasion and migration of tongue cancer cells. CDH11 may serve as an effective clinical target for new tongue cancer treatments.

6.
Exp Cell Res ; 399(1): 112452, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33382997

RESUMO

Tongue squamous cell carcinoma (TSCC) is one of the most common cancers in the oral cavity. Notch signaling is frequently dysregulated in cancer. However, the role of Notch2 in TSCC is not well understood. The aim of this study was to investigate the effect of abnormal expression of Notch2 in TSCC. The expression of Notch2 was tested in 47 pairs of tissues from tongue cancer and normal samples by using immunohistochemical staining. Tongue cancer cells were transfected with siRNA or plasmid. The proliferation of the cells was tested by the CCK8 assay and colony formation assay. Subcutaneous tumor model was established to observe tumor growth. Transwell assay was used to detect the changes of cell migration and invasion ability. A humanized anti-Notch2 antibody was used to TSCC cells. We found that Notch2 was upregulated in tongue carcinoma tissues. Knocking down the expression of Notch2 by siRNA in the TSCC cell lines decreased proliferation ability both in vitro and in vivo. In addition, migration and invasion abilities were inhibited by knockdown of Notch2 in the TSCC cells. However, overexpression of Notch2 increased tongue cancer cell proliferation, invasion and migration. The humanized anti-Notch2 antibody inhibited TSCC cell growth. The results indicated that Notch2 is an oncogene in tongue squamous cell carcinoma and may become the target of a new approach for treating TSCC.


Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Receptor Notch2/genética , Neoplasias da Língua/genética , Animais , Carcinoma de Células Escamosas/patologia , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Língua/patologia , Regulação para Cima/genética
7.
Int J Biol Sci ; 16(4): 598-610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025208

RESUMO

Our previous study demonstrated a close relationship between the NOTCH signaling pathway and salivary adenoid cystic carcinoma (SACC). Its receptor gene, NOTCH1, and its downstream gene, HES1, contribute to the proliferation, invasion and metastasis of SACC. Accumulating evidence supports HEY1 as another effector of the signaling pathway. The purpose of this study was to explore the effects of the NOTCH1-HEY1 pathway on the proliferation, invasion and metastasis of SACC cells. Our results verified that HEY1 is a specific molecular target of the NOTCH signaling pathway in SACC cells and that its expression in carcinoma is much higher than that in paracarcinoma tissues. The expression of NOTCH1 and HEY1 are positively correlated in the salivary adenoid cystic carcinoma tissues. NOTCH1 is significantly related to the activation of HEY1 in SACC, and that HEY1 reciprocally regulates NOTCH1 expression in SACC. HEY1 promotes cell proliferation and spheroid formation and inhibits cell apoptosis in vitro. In addition, HEY1 enhances the tumorigenicity of SACC in vivo. Furthermore, HEY1 increases cell invasion and metastasis by driving the expression of epithelial-mesenchymal transition (EMT)-related genes and MMPs. The results of this study indicate that the NOTCH1-HEY1 pathway is specifically upregulated in SACC and promotes cell proliferation, self-renewal, invasion, metastasis and the expression of EMT-related genes and MMPs. Our findings suggest that a NOTCH1-HEY1 pathway inhibitor might therefore have potential therapeutic applications in treating SACC patients by inhibiting cancer cell growth and metastasis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Adenoide Cístico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Receptor Notch1/metabolismo , Glândulas Salivares/patologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Adenoide Cístico/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Receptor Notch1/genética , Glândulas Salivares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiazolidinas/farmacologia
8.
Front Mol Biosci ; 7: 590912, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469547

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck tumor. It is a high incidence malignant tumor associated with a low survival rate and limited treatment options. Accumulating conclusions indicate that the Wnt signaling pathway plays a vital role in the pathobiological process of HNSCC. The canonical Wnt/ß-catenin signaling pathway affects a variety of cellular progression, enabling tumor cells to maintain and further promote the immature stem-like phenotype, proliferate, prolong survival, and gain invasiveness. Genomic studies of head and neck tumors have shown that although ß-catenin is not frequently mutated in HNSCC, its activity is not inhibited by mutations in upstream gene encoding ß-catenin, NOTCH1, FAT1, and AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the Wnt pathway. This paper aims to summarize the groundbreaking discoveries and recent advances involving the Wnt signaling pathway and highlight the relevance of this pathway in head and neck squamous cell cancer, which will help provide new insights into improving the treatment of human HNSCC by interfering with the transcriptional signaling of Wnt.

9.
Int J Biol Sci ; 15(11): 2330-2339, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595151

RESUMO

Many studies have shown that FZD2 is significantly associated with tumor development and tumor metastasis. The purpose of the present study was to gain insight into the role of FZD2 in the cell proliferation and invasion of tongue squamous cell carcinoma. According to TCGA-HNSC dataset, among the 10 Frizzled receptors, FZD2 exhibited the highest degree of differential expression between cancer tissues and normal tissues, and the overall survival of patients with higher FZD2 levels was shown to be significantly shorter compared with those with lower FZD2 levels. The upregulation of FZD2 in clinical tongue cancer tissues was validated by real-time PCR. Knockdown of FZD2 inhibited the proliferation, migration and invasion of CAL-27 and TCA-8113 cells, whereas overexpression of FZD2 led to the opposite results. Further analysis revealed that FZD2 is positively correlated with WNT3A, WNT5B, WNT7A and WNT2 and is negatively correlated with WNT4. These results indicated that FZD2 may act as an oncogene in tongue squamous cell carcinoma. Therefore, FZD2 may be a target for the diagnosis, prognosis and gene therapy of tongue cancer.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Receptores Frizzled/fisiologia , Neoplasias da Língua/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Movimento Celular , Proliferação de Células , Feminino , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias da Língua/genética , Neoplasias da Língua/mortalidade , Neoplasias da Língua/patologia , Proteínas Wnt/metabolismo
10.
Onco Targets Ther ; 12: 7663-7674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571917

RESUMO

PURPOSE: The Notch signaling pathway plays an oncogenic role in tongue squamous cell carcinoma. The aim of this study was to inhibit the proliferation and self-renewal of tongue cancer cells by applying Notch signaling pathway inhibitor FLI-06 (Selleck, USA) and to lay a foundation for the clinically targeted treatment of tongue cancer for the future. METHODS: The mRNA expression level of Notch1 and the overall survival rate of patients with tongue cancer were examined by analyzing the TCGA database. Tongue cancer cells were treated with FLI-06. Cell proliferation, apoptosis, and stem cell self-renewal ability were tested in appropriate ways. A xenograft mouse model was established to observe tumor growth. RESULTS: From the TCGA data, we demonstrated that patients with high expression of Notch1 had a poor prognosis. We observed that the Notch signaling pathway inhibitor FLI-06 can restrain the activation of the Notch signaling pathway, decrease cell proliferation and induce cell apoptosis in vitro. The xenograft experiment indicated that intraperitoneal injection of FLI-06 inhibited tumor growth and increased cell apoptosis. FLI-06 suppressed both the mRNA and protein expression of Notch receptor and Notch targeted genes. We also observed that FLI-06 suppressed the proliferation of tongue cancer stem cells. CONCLUSION: FLI-06 can block the proliferation and self-renewal of tongue cancer cells. It is inferred that this compound, which inhibits the Notch signaling pathway, may serve as a potential targeted drug for the treatment of tongue cancer in the clinic.

11.
BMC Cancer ; 18(1): 436, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665790

RESUMO

BACKGROUND: Our previous study demonstrated a close relationship between NOTCH signaling pathway and salivary adenoid cystic carcinoma (SACC). HES1 is a well-known target gene of NOTCH signaling pathway. The purpose of the present study was to further explore the molecular mechanism of HES1 in SACC. METHODS: Comparative transcriptome analyses by RNA-Sequencing (RNA-Seq) were employed to reveal NOTCH1 downstream gene in SACC cells. Immunohistochemical staining was used to detect the expression of HES1 in clinical samples. After HES1-siRNA transfected into SACC LM cells, the cell proliferation and cell apoptosis were tested by suitable methods; animal model was established to detect the change of growth ability of tumor. Transwell and wound healing assays were used to evaluate cell metastasis and invasion. RESULTS: We found that HES1 was strongly linked to NOTCH signaling pathway in SACC cells. The immunohistochemical results implied the high expression of HES1 in cancerous tissues. The growth of SACC LM cells transfected with HES1-siRNAs was significantly suppressed in vitro and tumorigenicity in vivo by inducing cell apoptosis. After HES1 expression was silenced, the SACC LM cell metastasis and invasion ability was suppressed. CONCLUSIONS: The results of this study demonstrate that HES1 is a specific downstream gene of NOTCH1 and that it contributes to SACC proliferation, apoptosis and metastasis. Our findings serve as evidence indicating that HES1 may be useful as a clinical target in the treatment of SACC.


Assuntos
Carcinoma Adenoide Cístico/genética , Oncogenes , Neoplasias das Glândulas Salivares/genética , Fatores de Transcrição HES-1/genética , Adulto , Idoso , Animais , Apoptose/genética , Carcinoma Adenoide Cístico/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Interferente Pequeno/genética , Receptor Notch1/genética , Recidiva , Neoplasias das Glândulas Salivares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Cycle ; 17(2): 216-224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29117785

RESUMO

OBJECTIVES: Notch1 regulates tumor biology in a complex, context-dependent manner. The roles of Notch1 in tongue cancer are still controversial. The aim of this study is to investigate the roles of Notch1 in tongue cancer. MATERIALS AND METHODS: The expression of Notch1 was tested between tongue cancer and normal samples by using immunohistochemistry. Tongue cancer cells were transfected with siRNA or plasmid, respectively. Cell proliferation, apoptosis, migration and invasion ability were tested in appropriate ways. The subcutaneous tumor model was established to observe the tumor growth. RESULTS: Notch1 was upregulated in tongue carcinoma tissues and the expression of Notch1 was related with tumor stage and differentiation. Overexpression of Notch1 could increase tongue cancer cells proliferation, invasion and migration. But inhibited the expression of Notch1 could decrease cells proliferation, invasion and migration and promote cell apoptosis in vitro and in vivo. CONCLUSION: Our results prove that the oncogenic role of Notch1 in tongue cancer and provide the direction of targeted therapy of tongue cancer.


Assuntos
Carcinoma de Células Escamosas/patologia , Receptor Notch1/fisiologia , Neoplasias da Língua/patologia , Animais , Apoptose , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/secundário , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo
13.
Mol Med Rep ; 16(6): 8907-8915, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039489

RESUMO

Previous studies have reported that inhibitor of DNA binding 1 (ID1) exerts an oncogenic role in a number of tumors. In the present study, the role of ID1 in the growth, invasion and migration of salivary adenoid cystic carcinoma (SACC) cells was investigated. ID1 expression in clinical SACC samples was compared with that in normal salivary tissues using immunohistochemical staining, and the correlation between ID1 expression and clinical pathological characteristics was then determined. Subsequently, ID1 was overexpressed or silenced to investigate the effects of ID1 expression on SACC cell proliferation, invasion and migration. In addition, the gene expression levels of known ID1 target genes, including S100A9, CDKN2A and matrix metalloproteinase 1 (MMP1) was measured using reverse transcription­quantitative polymerase chain reaction to elucidate the potential mechanisms of ID1 in SACC. The results of the present study indicated that the protein expression levels of ID1 were significantly increased in the SACC tissues compared with that in the normal salivary tissues (P<0.001), and a positive correlation between ID1 expression and tumor stage (P=0.001), tumor invasion (P=0.002) and metastasis (P=0.019) in SACC was observed. Knockdown of ID1 in SACC cells significantly inhibited cell growth, invasion and migration (all P<0.01), whereas overexpression of ID1 promoted cell proliferation, invasion and migration (all P<0.01). The gene expression level of MMP1 was significantly reduced following ID1 knockdown in SACC­83 cells when compared with negative controls (P<0.05), whereas S100A9 and CDKN2A expression levels were significantly upregulated (both P<0.05). The results suggest that ID1 may regulate the growth, invasion and migration of SACC cells, and that MMP1, S100A9 and CDKN2A may serve as target genes of ID1 and mediate the effects of ID1 in SACC cells. Therefore, ID1 may present a potential target gene for the treatment of patients with SACC to inhibit cancer cell growth and metastasis.


Assuntos
Carcinoma Adenoide Cístico/genética , Proteína 1 Inibidora de Diferenciação/genética , Neoplasias das Glândulas Salivares/genética , Adulto , Idoso , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes p16 , Humanos , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia
14.
Oncotarget ; 7(50): 82961-82971, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27783992

RESUMO

The cadherin-4 gene (CDH4) of the cadherin family encodes non-epithelial R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. In this study, we found higher expression of CDH4 mRNA in a salivary adenoid cystic carcinoma (SACC) cell line with low metastatic potential (SACC-83) than in a cell line with high metastatic potential (SACC-LM). By analyzing 67 samples of SACC tissues and 40 samples of paraneoplastic normal tissues, we found R-cad highly expressed in 100% of normal paraneoplastic tissue but only expressed in 64% of SACC tumor tissues (P<0.001). Knockdown of CDH4 expression in vitro promoted the growth, mobility and invasion of SACC cells, and in vivo experiments showed that decreased CDH4 expression enhanced SACC tumorigenicity. Furthermore, CDH4 suppression resulted in down-regulation of E-cadherin (E-cad), which is encoded by CDH1 gene and is a well-known tumor suppressor gene by inhibition of cell proliferation and migration. These results indicate that CDH4 may play a negative role in the growth and metastasis of SACC via co-expression with E-cadherin.


Assuntos
Caderinas/metabolismo , Carcinoma Adenoide Cístico/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Animais , Antígenos CD , Caderinas/genética , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/secundário , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Interferência de RNA , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Transdução de Sinais , Fatores de Tempo , Transfecção , Carga Tumoral
15.
Mol Cell Biochem ; 411(1-2): 135-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26427670

RESUMO

Many studies have explored whether the Notch signaling pathway has a tumor-suppressive or an oncogenic role in various tumors; however, the role of the Notch signaling pathway in salivary adenoid cystic carcinoma (SACC) is still unknown. In this study, we attempt to define the role of Notch2 signaling in cell growth, invasion, and migration in SACC. We compared Notch2 expression in clinical SACC samples with that of normal samples by using immunohistochemical staining. Then, we down-regulated Notch2 expression to observe the effect of Notch2 on proliferation, invasion, migration, and the expression of known target genes of Notch signal pathway. According to our results, Notch2 expression was higher in SACC tissues compared with normal tissues. Knockdown of Notch2 inhibited cell proliferation, invasion, and migration in vitro and down-regulated the expression of HEY2 and CCND1. The results of this study suggest that Notch2 has an essential role in the cell growth, invasion, and migration of SACC. Notch2 may therefore be a potential target gene for the treatment of SACC by interfering with cell growth and metastasis.


Assuntos
Carcinoma Adenoide Cístico/patologia , Proliferação de Células , Invasividade Neoplásica , Metástase Neoplásica , Receptor Notch2/metabolismo , Neoplasias das Glândulas Salivares/patologia , Transdução de Sinais , Carcinoma Adenoide Cístico/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Receptor Notch2/genética , Neoplasias das Glândulas Salivares/metabolismo
16.
Oncol Rep ; 35(2): 1006-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25695658

RESUMO

Several studies have reported that FZD2 regulates tumor biology in a complex manner. The aim of the present study was to identify the role of FZD2 in the cell growth and metastasis of salivary adenoid cystic carcinomas (SACCs). The expression of FZD2 in ACC-83 and ACC-LM cells were measured with real-time PCR. Immunohistochemical staining was used to detect the expression of FZD2 in clinical SACC samples with or without metastasis. Cell proliferation and Transwell assays were performed to explore the effects of FZD2 on cell growth and migration following the silencing of FZD2 with small interference RNAs and the overexpression of FZD2 with plasmid. Our data showed that FZD2 was downregulated in ACC-LM cells, which are an adenoid cystic carcinoma cell line with high metastatic potential, compared to ACC-83 cells, which have low metastatic potential. Additionally, the expression of FZD2 was lower in SACC tissues with metastasis compared to SACC tissues without metastasis (P<0.05). Cell proliferation and migration of ACC-83 cells were increased after the knockdown of FZD2 and decreased following overexpression of FZD2. Knockdown of FZD2 downregulated the expression of PAI-1. Our results suggest that FZD2 may be a tumor suppressor gene in SACCs that inhibits cell growth and migration.


Assuntos
Carcinoma Adenoide Cístico/patologia , Receptores Frizzled/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias das Glândulas Salivares/patologia , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Humanos , Invasividade Neoplásica , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Ensaio Tumoral de Célula-Tronco , Via de Sinalização Wnt
17.
Oncotarget ; 5(16): 6885-95, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25149541

RESUMO

BACKGROUND: Numerous studies have reported both the tumor-suppressive and oncogenic roles of the Notch pathway, indicating that Notch activity regulates tumor biology in a complex, context-dependent manner. The aim of the present study was to identify the role of NOTCH1 in the cell growth and metastasis of SACC. METHODS: We analyzed the expression of NOTCH1 in clinical SACC samples using immunohistochemical staining. We silenced the expression of NOTCH1 and overexpressed activated NOTCH1 to elucidate the effects of NOTCH1 on proliferation, migration and invasion. NOTCH1 target genes were validated by real-time PCR. RESULTS: Our results showed that NOTCH1 was upregulated in SACC tissues when compared with normal tissues, and this upregulation was further enhanced in SACC tissues with metastasis and recurrence when compared with SACC tissues without metastasis. Overexpression of NOTCH1 in SACC cells promoted cell growth, migration and invasion, and knockdown of NOTCH1 inhibited cell proliferation in vitro and tumorigenicity in vivo by inducing cell apoptosis. CONCLUSIONS: The results of this study suggest that NOTCH1 plays a key role in the cell growth, anti-apoptosis, and metastasis of SACC. NOTCH1 inhibitors might therefore have potential therapeutic applications in treating SACC patients by inhibiting cancer cell growth and metastasis.


Assuntos
Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Receptor Notch1/biossíntese , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Animais , Apoptose/fisiologia , Carcinoma Adenoide Cístico/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Neoplasias das Glândulas Salivares/genética , Transdução de Sinais , Transfecção , Regulação para Cima
18.
Free Radic Biol Med ; 65: 632-644, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23920313

RESUMO

NAD(P)H:quinone oxidoreductase 1 (NQO1) is a phase II enzyme that participates in the detoxification of dopamine-derived quinone molecules and reactive oxygen species. Our prior work using a proteomic approach found that NQO1 protein levels were significantly decreased in stable hepatitis B virus (HBV)-producing hepatoma cells relative to the empty-vector-transfected controls. However, the mechanism and biological significance of the NQO1 suppression remain elusive. In this study we demonstrate that HBV X protein (HBx) induces epigenetic silencing of NQO1 in hepatoma cells through promoter hypermethylation via recruitment of DNA methyltransferase DNMT3A to the promoter region of the NQO1 gene. In HBV-related hepatocellular carcinoma (HCC) specimens, HBx expression was correlated negatively to NQO1 transcripts but positively to NQO1 promoter hypermethylation. Downregulation of NQO1 by HBx reduced intracellular glutathione levels, impaired mitochondrial function, and increased susceptibility of hepatoma cells to oxidative stress-induced cell injury. These results suggest a novel mechanism for HBV-mediated pathogenesis of chronic liver diseases, including HCC.


Assuntos
Carcinoma Hepatocelular/virologia , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/virologia , NAD(P)H Desidrogenase (Quinona)/genética , Transativadores/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilação de DNA , Epigênese Genética , Inativação Gênica , Hepatite B/genética , Humanos , Mitocôndrias/patologia , Estresse Oxidativo/genética , Reação em Cadeia da Polimerase , Proteínas Virais Reguladoras e Acessórias
19.
J Cell Biochem ; 113(5): 1537-46, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22173998

RESUMO

PA28ß is a subunit of proteasome activator PA28. Previous study suggests that PA28ß is involved in the invasiveness and metastasis of gastric adenocarcinoma (GA), however, the mechanism is not fully understood. In the present study, we showed that invasive abilities of gastric cancer cells were enhanced when PA28ß being down-regulated, and were inhibited when PA28ß being overexpressed. To explore the possible mechanism of PA28ß associated elevated invasiveness, the protein profiles of PA28ß knock down and parental negative control gastric cancer cells were compared using proteomics approach. The results revealed that there were 43 proteins were differentially expressed, among them, chloride intracellular channel 1 (CLIC1) was significantly up-regulated and selected for further functional study. Down-regulation of CLIC1 by RNA interference was able to markedly inhibit cell invasion of PA28ß knock down gastric carcinoma cells. In addition, an inverse correlation between PA28ß and CLIC1 expressions was also verified in GA tissue samples, suggesting that knockdown of PA28ß could enhance tumor invasion and metastasis, at least in part, through up-regulation of CLIC1. Our results provide novel insight into the mechanisms of PA28ß related invasiveness and metastasis of GA, and suggest new alternative approaches for GA treatment.


Assuntos
Canais de Cloreto/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Sequência de Bases , Linhagem Celular Tumoral , Canais de Cloreto/genética , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma , Análise Serial de Proteínas , Proteômica , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias Gástricas/genética
20.
Oncol Rep ; 26(1): 101-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21573496

RESUMO

Cadherins are found in almost all living organisms. In addition to their role in the formation and maintenance of normal tissue architecture, cadherins seem to play a crucial role in the cell-cell interactions of cancer cells in tumorigenesis, invasion and metastasis. The aim of the present study was to identify the role of CDH12 in the invasion and metastasis of salivary adenoid cystic carcinoma (SACC). Real-time PCR results showed that CDH12 is abnormally expressed in the highly metastatic SACC cell line ACC-M, compared to ACC-2, a SACC cell line with low metastatic ability. CDH12 expression was significantly higher in clinical samples with metastasis and recurrence than in those without metastasis and recurrence (P<0.05), as demonstrated by immunohistochemical analysis. Overexpression of the CDH12 protein in ACC-M cells infected with an adenovirus vector containing CDH12 enhanced the invasive and migratory ability of ACC-M cells in vitro compared to ACC-M cells infected with empty vector. Likewise, knockdown of CDH12 by small interfering RNA efficiently inhibited the invasion and migration of ACC-M cells in vitro. These results indicate that CDH12 may play an important role in the invasion and metastasis of SACC.


Assuntos
Caderinas/metabolismo , Carcinoma Adenoide Cístico/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias das Glândulas Salivares/metabolismo , Movimento Celular , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Metástase Neoplásica , Protocaderinas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA