Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979280

RESUMO

Aging is associated with a decline in the number and fitness of adult stem cells 1-4 . Aging-associated loss of stemness is posited to suppress tumorigenesis 5,6 , but this hypothesis has not been tested in vivo . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells 7,8 , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin. This phenotype is underpinned by aging-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, leading to a functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescue stemness and promote tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1- lipocalin-2 axis is detrimental to young alveolar cells via induction of ferroptosis. We find that aging-associated DNA hypomethylation at specific enhancer sites associates with elevated NUPR1 expression, which is recapitulated in young alveolar cells by inhibition of DNA methylation. We uncover that aging drives a functional iron insufficiency, which leads to loss of stemness and tumorigenesis, but promotes resistance to ferroptosis. These findings have significant implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate in young individuals, revealing a critical window for such cancer prevention efforts.

2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895216

RESUMO

Osteosarcoma (OS) is the most common primary pediatric bone malignancy. One promising new therapeutic target is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase responsible for ubiquitination and proteasome degradation of substrate p27, thus driving cellular proliferation. We have shown previously that knockout of Skp2 in an immunocompetent transgenic mouse model of OS improved survival, drove apoptosis, and induced tumor inflammation. Here, we applied single-cell RNA-sequencing (scRNA-seq) to study primary OS tumors derived from Osx-Cre driven conditional knockout of Rb1 and Trp53. We showed that murine OS models recapitulate the tumor heterogeneity and microenvironment complexity observed in patient tumors. We further compared this model with OS models with functional disruption of Skp2: one with Skp2 knockout and the other with the Skp2-p27 interaction disrupted (resulting in p27 overexpression). We found reduction of T cell exhaustion and upregulation of interferon activation, along with evidence of replicative and endoplasmic reticulum-related stress in the Skp2 disruption models, and showed that interferon induction was correlated with improved survival in OS patients. Additionally, our scRNA-seq analysis uncovered decreased activities of metastasis-related gene signatures in the Skp2-disrupted OS, which we validated by observation of a strong reduction in lung metastasis in the Skp2 knockout mice. Finally, we report several potential mechanisms of escape from targeting Skp2 in OS, including upregulation of Myc targets, DNA copy number amplification and overexpression of alternative E3 ligase genes, and potential alternative lineage activation. These mechanistic insights into OS tumor biology and Skp2 function suggest novel targets for new, synergistic therapies, while the data and our comprehensive analysis may serve as a public resource for further big data-driven OS research.

3.
NPJ Genom Med ; 9(1): 35, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898085

RESUMO

HPV infections are associated with a fraction of vulvar cancers. Through hybridization capture and DNA sequencing, HPV DNA was detected in five of thirteen vulvar cancers. HPV16 DNA was integrated into human DNA in three of the five. The insertions were in introns of human NCKAP1, C5orf67, and LRP1B. Integrations in NCKAP1 and C5orf67 were flanked by short direct repeats in the human DNA, consistent with HPV DNA insertions at sites of abortive, staggered, endonucleolytic incisions. The insertion in C5orf67 was present as a 36 kbp, human-HPV-hetero-catemeric DNA as either an extrachromosomal circle or a tandem repeat within the human genome. The human circularization/repeat junction was defined at single nucleotide resolution. The integrated viral DNA segments all retained an intact upstream regulatory region and the adjacent viral E6 and E7 oncogenes. RNA sequencing revealed that the only HPV genes consistently transcribed from the integrated viral DNAs were E7 and E6*I. The other two HPV DNA+ tumors had coinfections, but no evidence for integration. HPV-positive and HPV-negative vulvar cancers exhibited contrasting human, global gene expression patterns partially overlapping with previously observed differences between HPV-positive and HPV-negative cervical and oropharyngeal cancers. A substantial fraction of the differentially expressed genes involved immune system function. Thus, transcription and HPV DNA integration in vulvar cancers resemble those in other HPV-positive cancers. This study emphasizes the power of hybridization capture coupled with DNA and RNA sequencing to identify a broad spectrum of HPV types, determine human genome integration status of viral DNAs, and elucidate their structures.

4.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895201

RESUMO

Transposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications. The effect of 3D chromatin topology on TE regulation remains elusive. Here, by integrating transcriptome and 3D genome architecture studies, we showed that haploinsufficient loss of NIPBL selectively activates alternative promoters at the long terminal repeats (LTRs) of the TE subclasses. This activation occurs through the reorganization of topologically associating domain (TAD) hierarchical structures and recruitment of proximal enhancers. These observations indicate that TAD hierarchy restricts transcriptional activation of LTRs that already possess open chromatin features. In cancer, perturbation of the hierarchical chromatin topology can lead to co-option of LTRs as functional alternative promoters in a context-dependent manner and drive aberrant transcriptional activation of novel oncogenes and other divergent transcripts. These data uncovered a new layer of regulatory mechanism of TE expression beyond DNA and chromatin modification in human genome. They also posit the TAD hierarchy dysregulation as a novel mechanism for alternative promoter-mediated oncogene activation and transcriptional diversity in cancer, which may be exploited therapeutically.

5.
Sci Adv ; 10(19): eadk1857, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718110

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy shows impressive efficacy treating hematologic malignancies but requires further optimization in solid tumors. Here, we developed a TMIGD2 optimized potent/persistent (TOP) CAR that incorporated the costimulatory domain of TMIGD2, a T and NK cell costimulator, and monoclonal antibodies targeting the IgV domain of B7-H3, an immune checkpoint expressed on solid tumors and tumor vasculature. Comparing second- and third-generation B7-H3 CARs containing TMIGD2, CD28, and/or 4-1BB costimulatory domains revealed superior antitumor responses in B7-H3.TMIGD2 and B7-H3.CD28.4-1BB CAR-T cells in vitro. Comparing these two constructs using in vivo orthotopic human cancer models demonstrated that B7-H3.TMIGD2 CAR-T cells had equivalent or superior antitumor activity, survival, expansion, and persistence. Mechanistically, B7-H3.TMIGD2 CAR-T cells maintained mitochondrial metabolism; produced less cytokines; and established fewer exhausted cells, more central memory cells, and a larger CD8/CD4 T cell ratio. These studies demonstrate that the TOP CAR with TMIGD2 costimulation offered distinct benefits from CD28.41BB costimulation and is effective against solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antígenos B7/metabolismo , Antígenos B7/imunologia , Antígenos CD28/metabolismo , Antígenos CD28/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
6.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496663

RESUMO

The mechanisms driving late relapse in uveal melanoma (UM) patients remains a medical mystery and major challenge. Clinically it is inferred that UM disseminated cancer cells (DCCs) persist asymptomatic for years-to-decades mainly in the liver before they manifest as symptomatic metastasis. Here we reveal using Gαq/11 mut /BAP wt human uveal melanoma models and human UM metastatic samples, that the neural crest lineage commitment nuclear receptor NR2F1 is a key regulator of spontaneous UM DCC dormancy in the liver. Using a quiescence reporter, RNA-seq and multiplex imaging we revealed that rare dormant UM DCCs upregulate NR2F1 expression and genes related to neural crest programs while repressing gene related to cell cycle progression. Gain and loss of function assays showed that NR2F1 silences YAP1/TEAD1 transcription downstream of Gαq/11 signaling and that NR2F1 expression can also be repressed by YAP1. YAP1 expression is repressed by NR2F1 binding to its promoter and changing the histone H3 tail activation marks to repress YAP1 transcription. In vivo CRISPR KO of NR2F1 led dormant UM DCCs to awaken and initiate relentless liver metastatic growth. Cut&Run and bulk RNA sequencing further confirmed that NR2F1 epigenetically stimulates neuron axon guidance and neural lineage programs, and it globally represses gene expression linked to G-protein signaling to drive dormancy. Pharmacological inhibition of Gαq/11 mut signaling resulted in NR2F1 upregulation and robust UM growth arrest, which was also achieved using a novel NR2F1 agonist. Our work sheds light on the molecular underpinnings of UM dormancy revealing that transcriptional programs driven by NR2F1 epigenetically short-circuit Gαq/11 signaling to its downstream target YAP1. Highlights: Quiescent solitary uveal melanoma (UM) DCCs in the liver up- and down-regulate neural crest and cell cycle progression programs, respectively.NR2F1 drives solitary UM DCC dormancy by antagonizing the Gαq/11-YAP1 pathway; small molecule Gαq/11 inhibition restores NR2F1 expression and quiescence. NR2F1 short-circuits oncogenic YAP1 and G-protein signaling via a chromatin remodeling program. Loss of function of NR2F1 in dormant UM DCCs leads to aggressive liver metastasis.

7.
Oncogene ; 43(13): 962-975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355807

RESUMO

Osteosarcoma(OS) is a highly aggressive bone cancer for which treatment has remained essentially unchanged for decades. Although OS is characterized by extensive genomic heterogeneity and instability, RB1 and TP53 have been shown to be the most commonly inactivated tumor suppressors in OS. We previously generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which largely recapitulates human OS with nearly complete penetrance. SKP2 is a repression target of pRb and serves as a substrate recruiting subunit of the SCFSKP2 complex. In addition, SKP2 plays a central role in regulating the cell cycle by ubiquitinating and promoting the degradation of p27. We previously reported the DKOAA transgenic model, which harbored a knock-in mutation in p27 that impaired its binding to SKP2. Here, we generated a novel p53-Rb1-SKP2 triple-knockout model (TKO) to examine SKP2 function and its potential as a therapeutic target in OS. First, we observed that OS tumorigenesis was significantly delayed in TKO mice and their overall survival was markedly improved. In addition, the loss of SKP2 also promoted an apoptotic microenvironment and reduced the stemness of DKO tumors. Furthermore, we found that small-molecule inhibitors of SKP2 exhibited anti-tumor activities in vivo and in OS organoids as well as synergistic effects when combined with a standard chemotherapeutic agent. Taken together, our results suggest that SKP2 inhibitors may reduce the stemness plasticity of OS and should be leveraged as next-generation adjuvants in this cancer.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Carcinogênese , Inibidor de Quinase Dependente de Ciclina p27/genética , Camundongos Knockout , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Microambiente Tumoral
8.
Nat Commun ; 15(1): 11, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167704

RESUMO

Acute myeloid leukemia (AML) is initiated and sustained by a hierarchy of leukemia stem cells (LSCs), and elimination of this cell population is required for curative therapies. Here we show that transmembrane and immunoglobulin domain containing 2 (TMIGD2), a recently discovered co-stimulatory immune receptor, is aberrantly expressed by human AML cells, and can be used to identify and enrich functional LSCs. We demonstrate that TMIGD2 is required for the development and maintenance of AML and self-renewal of LSCs but is not essential for normal hematopoiesis. Mechanistically, TMIGD2 promotes proliferation, blocks myeloid differentiation and increases cell-cycle of AML cells via an ERK1/2-p90RSK-CREB signaling axis. Targeting TMIGD2 signaling with anti-TMIGD2 monoclonal antibodies attenuates LSC self-renewal and reduces leukemia burden in AML patient-derived xenograft models but has negligible effect on normal hematopoietic stem/progenitor cells. Thus, our studies reveal the function of TMIGD2 in LSCs and provide a promising therapeutic strategy for AML.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Humanos , Células-Tronco Hematopoéticas , Transdução de Sinais , Hematopoese , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico
9.
Clin Cancer Res ; 30(4): 865-876, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38060213

RESUMO

PURPOSE: The abundance and biological contribution of cancer-associated fibroblasts (CAF) in glioblastoma (GBM) are poorly understood. Here, we aim to uncover its molecular signature, cellular roles, and potential tumorigenesis implications. EXPERIMENTAL DESIGN: We first applied single-cell RNA sequencing (RNA-seq) and bioinformatics analysis to identify and characterize stromal cells with CAF transcriptomic features in human GBM tumors. Then, we performed functional enrichment analysis and in vitro assays to investigate their interactions with malignant GBM cells. RESULTS: We found that CAF abundance was low but significantly correlated with tumor grade, poor clinical outcome, and activation of extracellular matrix remodeling using three large cohorts containing bulk RNA-seq data and clinical information. Proteomic analysis of a GBM-derived CAF line and its secretome revealed fibronectin (FN1) as a critical candidate factor mediating CAF functions. This was validated using in vitro cellular models, which demonstrated that CAF-conditioned media and recombinant FN1 could facilitate the migration and invasion of GBM cells. In addition, we showed that CAFs were more abundant in the mesenchymal-like state (or subtype) than in other states of GBMs. Interestingly, cell lines resembling the proneural state responded to the CAF signaling better for the migratory and invasive phenotypes. CONCLUSIONS: Overall, this study characterized the molecular features and functional impacts of CAFs in GBM, alluding to novel cell interactions mediated by CAFs in the GBM microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Glioblastoma , Humanos , Fibroblastos Associados a Câncer/metabolismo , Glioblastoma/patologia , Linhagem Celular Tumoral , Proteômica , Movimento Celular/genética , Microambiente Tumoral/genética , Fibroblastos/metabolismo
10.
Mol Cancer Ther ; 23(2): 223-234, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871911

RESUMO

Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis. Here, we performed RNA sequencing (RNA-seq) on tumors from a transgenic osteosarcoma mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;Skp2-/-), followed by qPCR and immunohistochemistry validation. To investigate the clinical implications of our results, we analyzed a human osteosarcoma patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. We found large differences in gene expression after SKP2 knockout. Surprisingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors, especially the signature genes for macrophages and to a lesser extent, T cells, B cells, and vascular cells. We also uncovered a set of relevant transcription factors that may mediate these changes. In osteosarcoma patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET osteosarcoma and the TCGA Sarcoma cohorts. Overall, our findings indicate that SKP2 may mediate immune exclusion from the osteosarcoma tumor microenvironment, suggesting that SKP2 modulation in osteosarcoma may induce antitumor immune activation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Camundongos , Neoplasias Ósseas/genética , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Transgênicos , Osteossarcoma/genética , Osteossarcoma/patologia , Prognóstico , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Nat Commun ; 14(1): 7555, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985764

RESUMO

Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.


Assuntos
Integrina alfa5 , Infarto do Miocárdio , Camundongos , Animais , Integrina alfa5/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , RNA/metabolismo
12.
Dev Cell ; 58(23): 2700-2717.e12, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37963469

RESUMO

How dedifferentiated stem-like tumor cells evade immunosurveillance remains poorly understood. We show that the lineage-plasticity regulator SOX9, which is upregulated in dedifferentiated tumor cells, limits the number of infiltrating T lymphocytes in premalignant lesions of mouse basal-like breast cancer. SOX9-mediated immunosuppression is required for the progression of in situ tumors to invasive carcinoma. SOX9 induces the expression of immune checkpoint B7x/B7-H4 through STAT3 activation and direct transcriptional regulation. B7x is upregulated in dedifferentiated tumor cells and protects them from immunosurveillance. B7x also protects mammary gland regeneration in immunocompetent mice. In advanced tumors, B7x targeting inhibits tumor growth and overcomes resistance to anti-PD-L1 immunotherapy. In human breast cancer, SOX9 and B7x expression are correlated and associated with reduced CD8+ T cell infiltration. This study, using mouse models, cell lines, and patient samples, identifies a dedifferentiation-associated immunosuppression mechanism and demonstrates the therapeutic potential of targeting the SOX9-B7x pathway in basal-like breast cancer.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Linfócitos T CD8-Positivos , Terapia de Imunossupressão , Fatores de Transcrição SOX9 , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo
13.
Circulation ; 148(11): 882-898, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350296

RESUMO

BACKGROUND: Pericytes have been implicated in tissue repair, remodeling, and fibrosis. Although the mammalian heart contains abundant pericytes, their fate and involvement in myocardial disease remains unknown. METHODS: We used NG2Dsred;PDGFRαEGFP pericyte:fibroblast dual reporter mice and inducible NG2CreER mice to study the fate and phenotypic modulation of pericytes in myocardial infarction. The transcriptomic profile of pericyte-derived cells was studied using polymerase chain reaction arrays and single-cell RNA sequencing. The role of transforming growth factor-ß (TGF-ß) signaling in regulation of pericyte phenotype was investigated in vivo using pericyte-specific TGF-ß receptor 2 knockout mice and in vitro using cultured human placental pericytes. RESULTS: In normal hearts, neuron/glial antigen 2 (NG2) and platelet-derived growth factor receptor α (PDGFRα) identified distinct nonoverlapping populations of pericytes and fibroblasts, respectively. After infarction, a population of cells expressing both pericyte and fibroblast markers emerged. Lineage tracing demonstrated that in the infarcted region, a subpopulation of pericytes exhibited transient expression of fibroblast markers. Pericyte-derived cells accounted for ~4% of PDGFRα+ infarct fibroblasts during the proliferative phase of repair. Pericyte-derived fibroblasts were overactive, expressing higher levels of extracellular matrix genes, integrins, matricellular proteins, and growth factors, when compared with fibroblasts from other cellular sources. Another subset of pericytes contributed to infarct angiogenesis by forming a mural cell coat, stabilizing infarct neovessels. Single-cell RNA sequencing showed that NG2 lineage cells diversify after infarction and exhibit increased expression of matrix genes, and a cluster with high expression of fibroblast identity markers emerges. Trajectory analysis suggested that diversification of infarct pericytes may be driven by proliferating cells. In vitro and in vivo studies identified TGF-ß as a potentially causative mediator in fibrogenic activation of infarct pericytes. However, pericyte-specific TGF-ß receptor 2 disruption had no significant effects on infarct myofibroblast infiltration and collagen deposition. Pericyte-specific TGF-ß signaling was involved in vascular maturation, mediating formation of a mural cell coat investing infarct neovessels and protecting from dilative remodeling. CONCLUSIONS: In the healing infarct, cardiac pericytes upregulate expression of fibrosis-associated genes, exhibiting matrix-synthetic and matrix-remodeling profiles. A fraction of infarct pericytes exhibits expression of fibroblast identity markers. Pericyte-specific TGF-ß signaling plays a central role in maturation of the infarct vasculature and protects from adverse dilative remodeling, but it does not modulate fibrotic remodeling.


Assuntos
Infarto do Miocárdio , Pericitos , Gravidez , Camundongos , Feminino , Humanos , Animais , Pericitos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Placenta/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Fibrose , Camundongos Knockout , Fenótipo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Mamíferos
14.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37214958

RESUMO

Purpose: Osteosarcoma (OS) is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in OS is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that SKP2 knockout in murine OS improved survival and delayed tumorigenesis. Here we aim to define the SKP2 drives transcriptional program and its clinical implication in OS. Experimental Design: We performed RNA-sequencing (RNA-seq) on tumors from a transgenic OS mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;SKP2-/-). We validated our RNA-seq findings using qPCR and immunohistochemistry. To investigate the clinical implications of our results, we analyzed a human OS patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. Results: We found large differences in gene expression after SKP2 knockout. Strikingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors. We observed significant increases in signature genes for macrophages and to a lesser extent, T cells, B cells and vascular cells. We also uncovered a set of relevant transcription factors that may mediate the changes. In OS patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET OS and the TCGA Sarcoma cohort. Conclusion: Our findings indicate that SKP2 may mediate immune exclusion from the OS tumor microenvironment, suggesting that SKP2 modulation in OS may induce anti-tumor immune activation.

15.
J Exp Clin Cancer Res ; 42(1): 93, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081505

RESUMO

Malignant breast cancer (BC) remains incurable mainly due to the cancer cell metastasis, which is mostly related to the status of Estrogen receptor alpha (ERα). However, our understanding of the mechanisms through which ERα regulates cancer cell metastasis remains limited. Here we identified a miR-29a-PTEN-AKT axis as a downstream signaling pathway of ERα governing breast cancer progression and metastasis. Two estrogen response element (ERE) half sites were identified in the promoter and enhancer regions of miR-29a, which mediated transcriptional regulation of miR-29a by ERα. Low level of miR-29a showed association with reduced metastasis and better survival in ERα+ luminal subtype of BC. In contrast, high level of miR-29a was detected in ERα- triple negative breast cancer (TNBC) in association with distant metastasis and poor survival. miR-29a overexpression in BC tumors increased the number of circulating tumor cells and promoted lung metastasis in mice. Targeted knockdown of miR-29a in TNBC cells in vitro or administration of a nanotechnology-based anti-miR-29a delivery in TNBC tumor-bearing mice in vivo suppressed cellular invasion, EMT and lung metastasis. PTEN was identified as a direct target of miR-29a, inducing EMT and metastasis via AKT signaling. A small molecular inhibitor of AKT attenuated miR-29a-induced EMT. These findings demonstrate a novel mechanism responsible for ERα-regulated breast cancer metastasis, and reveal the combination of ERα status and miR-29a levels as a new risk indicator in BC.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Melanoma Maligno Cutâneo
16.
Nat Cell Biol ; 25(1): 145-158, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36604594

RESUMO

Phenotypic plasticity associated with the hybrid epithelial-mesenchymal transition (EMT) is crucial to metastatic seeding and outgrowth. However, the mechanisms governing the hybrid EMT state remain poorly defined. Here we showed that deletion of the epigenetic regulator MLL3, a tumour suppressor frequently altered in human cancer, promoted the acquisition of hybrid EMT in breast cancer cells. Distinct from other EMT regulators that mediate only unidirectional changes, MLL3 loss enhanced responses to stimuli inducing EMT and mesenchymal-epithelial transition in epithelial and mesenchymal cells, respectively. Consequently, MLL3 loss greatly increased metastasis by enhancing metastatic colonization. Mechanistically, MLL3 loss led to increased IFNγ signalling, which contributed to the induction of hybrid EMT cells and enhanced metastatic capacity. Furthermore, BET inhibition effectively suppressed the growth of MLL3-mutant primary tumours and metastases. These results uncovered MLL3 mutation as a key driver of hybrid EMT and metastasis in breast cancer that could be targeted therapeutically.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/patologia , Metástase Neoplásica/patologia
17.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377656

RESUMO

Cancer immunotherapy targeting the TIGIT/PVR pathway is currently facing challenges. KIR2DL5, a member of the human killer cell, immunoglobulin-like receptor (KIR) family, has recently been identified as another binding partner for PVR. The biology and therapeutic potential of the KIR2DL5/PVR pathway are largely unknown. Here we report that KIR2DL5 was predominantly expressed on human NK cells with mature phenotype and cytolytic function and that it bound to PVR without competition with the other 3 known PVR receptors. The interaction between KIR2DL5 on NK cells and PVR on target cells induced inhibitory synapse formation, whereas new monoclonal antibodies blocking the KIR2DL5-PVR interaction robustly augmented the NK cytotoxicity against PVR+ human tumors. Mechanistically, both intracellular ITIM and ITSM of KIR2DL5 underwent tyrosine phosphorylation after engagement, which was essential for KIR2DL5-mediated NK suppression by recruiting SHP-1 and/or SHP-2. Subsequently, ITIM/SHP-1/SHP-2 and ITSM/SHP-1 downregulated the downstream Vav1/ERK1/2/p90RSK/NF-κB signaling. KIR2DL5+ immune cells infiltrated in various types of PVR+ human cancers. Markedly, the KIR2DL5 blockade reduced tumor growth and improved overall survival across multiple NK cell-based humanized tumor models. Thus, our results revealed functional mechanisms of KIR2DL5-mediated NK cell immune evasion, demonstrated blockade of the KIR2DL5/PVR axis as a therapy for human cancers, and provided an underlying mechanism for the clinical failure of anti-TIGIT therapies.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Transdução de Sinais , Fosforilação , Neoplasias/terapia , Neoplasias/metabolismo
18.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36066492

RESUMO

Cell surfaces display a wide array of molecules that confer identity. While flow cytometry and cluster of differentiation (CD) markers have revolutionized cell characterization and purification, functionally heterogeneous cellular subtypes remain unresolvable by the CD marker system alone. Using hematopoietic lineages as a paradigm, we leverage the extraordinary molecular diversity of heparan sulfate (HS) glycans to establish cellular "glycotypes" by utilizing a panel of anti-HS single-chain variable fragment antibodies (scFvs). Prospective sorting with anti-HS scFvs identifies functionally distinct glycotypes within heterogeneous pools of mouse and human hematopoietic progenitor cells and enables further stratification of immunophenotypically pure megakaryocyte-erythrocyte progenitors. This stratification correlates with expression of a heptad of HS-related genes that is reflective of the HS epitope recognized by specific anti-HS scFvs. While we show that HS glycotyping provides an orthogonal set of tools for resolution of hematopoietic lineages, we anticipate broad utility of this approach in defining and isolating novel, viable cell types across diverse tissues and species.


Assuntos
Hematopoese , Anticorpos de Cadeia Única , Citometria de Fluxo , Hematopoese/genética , Células-Tronco Hematopoéticas , Heparitina Sulfato , Humanos , Estudos Prospectivos
19.
Cancer Discov ; 12(9): 2120-2139, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35789380

RESUMO

Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignant peripheral nerve sheath tumor (MPNST), an aggressive sarcoma with poor prognosis and no effective targeted therapy. Through RNAi screening in MPNST, we found that PRC2 inactivation increases sensitivity to genetic or small-molecule inhibition of DNA methyltransferase 1 (DNMT1), which results in enhanced cytotoxicity and antitumor response. Mechanistically, PRC2 inactivation amplifies DNMT inhibitor-mediated expression of retrotransposons, subsequent viral mimicry response, and robust cell death in part through a protein kinase R (PKR)-dependent double-stranded RNA sensor. Collectively, our observations posit DNA methylation as a safeguard against antitumorigenic cell-fate decisions in PRC2-loss cancer to promote cancer pathogenesis, which can be therapeutically exploited by DNMT1-targeted therapy. SIGNIFICANCE: PRC2 inactivation drives oncogenesis in various cancers, but therapeutically targeting PRC2 loss has remained challenging. Here we show that PRC2-inactivating mutations set up a tumor context-specific liability for therapeutic intervention via DNMT1 inhibitors, which leads to innate immune signaling mediated by sensing of derepressed retrotransposons and accompanied by enhanced cytotoxicity. See related commentary by Guil and Esteller, p. 2020. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Antineoplásicos , Neoplasias , Neurofibrossarcoma , Carcinogênese/genética , Humanos , Mutação , Neoplasias/genética , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Complexo Repressor Polycomb 2/genética , Retroelementos
20.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852856

RESUMO

Immune checkpoint blockade (ICB) has demonstrated clinical success in "inflamed" tumors with substantial T cell infiltrates, but tumors with an immune-desert tumor microenvironment (TME) fail to benefit. The tumor cell-intrinsic molecular mechanisms of the immune-desert phenotype remain poorly understood. Here, we demonstrated that inactivation of the polycomb-repressive complex 2 (PRC2) core components embryonic ectoderm development (EED) or suppressor of zeste 12 homolog (SUZ12), a prevalent genetic event in malignant peripheral nerve sheath tumors (MPNSTs) and sporadically in other cancers, drove a context-dependent immune-desert TME. PRC2 inactivation reprogramed the chromatin landscape that led to a cell-autonomous shift from primed baseline signaling-dependent cellular responses (e.g., IFN-γ signaling) to PRC2-regulated developmental and cellular differentiation transcriptional programs. Further, PRC2 inactivation led to diminished tumor immune infiltrates through reduced chemokine production and impaired antigen presentation and T cell priming, resulting in primary resistance to ICB. Intratumoral delivery of inactivated modified vaccinia virus Ankara (MVA) enhanced tumor immune infiltrates and sensitized PRC2-loss tumors to ICB. Our results identify molecular mechanisms of PRC2 inactivation-mediated, context-dependent epigenetic reprogramming that underline the immune-desert phenotype in cancer. Our studies also point to intratumoral delivery of immunogenic viruses as an initial therapeutic strategy to modulate the immune-desert TME and capitalize on the clinical benefit of ICB.


Assuntos
Neoplasias , Vírus , Cromatina , Humanos , Complexo Repressor Polycomb 2/genética , Microambiente Tumoral , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA