Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Talanta ; 279: 126682, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39116734

RESUMO

Fabricating covalent organic frameworks with different morphologies based on the same structural motifs is both interesting and challenging. Here, a TTA-TFP-COF was synthesized by both solvothermal and room temperature methods, with 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (TTA) and 1,3,5-tris(4-formylphenyl)-benzene (TFP) as raw material. Using different synthesis conditions and adding aniline and benzaldehyde as regulators in the synthesis process, we found that these processes could slow down the reaction speed, increase the exchange and metathesis reactions of dynamic reversible reactions, and improve the reversibility of the reaction system. Thus, controllable synthesis of TTA-TFP-COF with different morphologies, including micro-particles, hollow tubes with controllable diameters, and micro-flowers was achieved. Our further study found that metal ions, Fe3+ and Cr3+ ions, could coordinate with N and O in TTA-TFP-COF and partially destroy the structure of TTA-TFP-COF. The particle size of the TTA-TFP-COF became smaller, thus resulting in the decrease of the light scattering intensity of the COF. An excellent linear relationship exists between the light scattering changes (ΔI) and metal ions concentration (c) from 2.0 to 350.0 µM for Fe3+ and 40.0-800.0 µM for Cr3+, respectively. Thus, rapid and selective analytical methods for detecting metal ions were developed by TTA-TFP-COF here.

2.
Clin Sci (Lond) ; 138(14): 883-900, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959295

RESUMO

Hypertension is a leading risk factor for disease burden worldwide. Vascular contraction and remodeling contribute to the development of hypertension. Glutathione S-transferase P1 (Gstp1) plays several critical roles in both normal and neoplastic cells. In this study, we investigated the effect of Gstp1 on hypertension as well as on vascular smooth muscle cell (VSMC) contraction and phenotypic switching. We identified the higher level of Gstp1 in arteries and VSMCs from hypertensive rats compared with normotensive rats for the first time. We then developed Adeno-associated virus 9 (AAV9) mediated Gstp1 down-regulation and overexpression in rats and measured rat blood pressure by using the tail-cuff and the carotid catheter method. We found that the blood pressure of spontaneously hypertensive rats (SHR) rose significantly with Gstp1 down-regulation and reduced apparently after Gstp1 overexpression. Similar results were obtained from the observations of 2-kidney-1-clip renovascular (2K1C) hypertensive rats. Gstp1 did not influence blood pressure of normotensive Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Further in vitro study indicated that Gstp1 knockdown in SHR-VSMCs promoted cell proliferation, migration, dedifferentiation and contraction, while Gstp1 overexpression showed opposite effects. Results from bioinformatic analysis showed that the Apelin/APLNR system was involved in the effect of Gstp1 on SHR-VSMCs. The rise in blood pressure of SHR induced by Gstp1 knockdown could be reversed by APLNR antagonist F13A. We further found that Gstp1 enhanced the association between APLNR and Nedd4 E3 ubiquitin ligases to induce APLNR ubiquitination degradation. Thus, in the present study, we discovered a novel anti-hypertensive role of Gstp1 in hypertensive rats and provided the experimental basis for designing an effective anti-hypertensive therapeutic strategy.


Assuntos
Pressão Sanguínea , Glutationa S-Transferase pi , Hipertensão , Músculo Liso Vascular , Ubiquitina-Proteína Ligases Nedd4 , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Ubiquitinação , Animais , Masculino , Ratos , Proliferação de Células , Glutationa S-Transferase pi/metabolismo , Glutationa S-Transferase pi/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética
3.
Phenomics ; 4(2): 158-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38884060

RESUMO

ADP-ribosylation is a reversible and dynamic post-translational modification mediated by ADP-ribosyltransferases (ARTs). Poly(ADP-ribose) polymerases (PARPs) are an important family of human ARTs. ADP-ribosylation and PARPs have crucial functions in host-pathogen interaction, especially in viral infections. However, the functions and potential molecular mechanisms of ADP-ribosylation and PARPs in Mycobacterium infection remain unknown. In this study, bioinformatics analysis revealed significantly changed expression levels of several PARPs in tuberculosis patients compared to healthy individuals. Moreover, the expression levels of these PARPs returned to normal following tuberculosis treatment. Then, the changes in the expression levels of PARPs during Mycobacterium infection were validated in Tohoku Hospital Pediatrics-1 (THP1)-induced differentiated macrophages infected with Mycobacterium model strains bacillus Calmette-Guérin (BCG) and in human lung adenocarcinoma A549 cells infected with Mycobacterium smegmatis (Ms), respectively. The mRNA levels of PARP9, PARP10, PARP12, and PARP14 were most significantly increased during infection, with corresponding increases in protein levels, indicating the possible biological functions of these PARPs during Mycobacterium infection. In addition, the biological function of host PARP9 in Mycobacterium infection was further studied. PARP9 deficiency significantly increased the infection efficiency and intracellular proliferation ability of Ms, which was reversed by the reconstruction of PARP9. Collectively, this study updates the understanding of changes in PARP expression during Mycobacterium infection and provides evidence supporting PARP9 as a potent suppressor for Mycobacterium infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00112-2.

4.
Circulation ; 149(19): 1516-1533, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38235590

RESUMO

BACKGROUND: Heart failure is associated with a high rate of mortality and morbidity, and ventricular remodeling invariably precedes heart failure. Ventricular remodeling is fundamentally driven by mechanotransduction that is regulated by both the nervous system and the immune system. However, it remains unknown which key molecular factors govern the neuro/immune/cardio axis that underlies mechanotransduction during ventricular remodeling. Here, we investigated whether the mechanosensitive Piezo cation channel-mediated neurogenic inflammatory cascade underlies ventricular remodeling-related mechanotransduction. METHODS: By ligating the left coronary artery of rats to establish an in vivo model of chronic myocardial infarction (MI), lentivirus-mediated thoracic dorsal root ganglion (TDRG)-specific Piezo1 knockdown rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific Piezo1 knockout mice were used to investigate whether Piezo1 in the TDRG plays a functional role during ventricular remodeling. Subsequently, neutralizing antibody-mediated TDRG IL-6 (interleukin-6) inhibition rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific IL-6 knockdown mice were used to determine the mechanism underlying neurogenic inflammation. Primary TDRG neurons were used to evaluate Piezo1 function in vitro. RESULTS: Expression of Piezo1 and IL-6 was increased, and these factors were functionally activated in TDRG neurons at 4 weeks after MI. Both knockdown of TDRG-specific Piezo1 and deletion of TDRG neuron-specific Piezo1 lessened the severity of ventricular remodeling at 4 weeks after MI and decreased the level of IL-6 in the TDRG or heart. Furthermore, inhibition of TDRG IL-6 or knockdown of TDRG neuron-specific IL-6 also ameliorated ventricular remodeling and suppressed the IL-6 cascade in the heart, whereas the Piezo1 level in the TDRG was not affected. In addition, enhanced Piezo1 function, as reflected by abundant calcium influx induced by Yoda1 (a selective agonist of Piezo1), led to increased release of IL-6 from TDRG neurons in mice 4 weeks after MI. CONCLUSIONS: Our findings point to a critical role for Piezo1 in ventricular remodeling at 4 weeks after MI and reveal a neurogenic inflammatory cascade as a previously unknown facet of the neuronal immune signaling axis underlying mechanotransduction.


Assuntos
Inflamação , Canais Iônicos , Infarto do Miocárdio , Remodelação Ventricular , Animais , Masculino , Camundongos , Ratos , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Interleucina-6/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Mecanotransdução Celular , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Remodelação Ventricular/genética , Remodelação Ventricular/fisiologia
5.
Biomark Med ; 17(17): 693-699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-38197316

RESUMO

Aims: TCF21 is considered a tumor suppressor gene. This work was designed to explore the associations between TCF21 polymorphisms and colorectal cancer (CRC) susceptibility. Methods: A case-control study was designed with 421 patients with CRC and 469 non-CRC controls. Six tagging single-nucleotide polymorphisms (rs2327429 T>C, rs2327430 T>C, rs2327433 A>G, rs12190287 C>G, rs7766238 G>A and rs4896011 T>A) were genotyped by ligase detection reaction of PCR. Results: TCF21 rs2327429 and rs12190287 polymorphisms were associated with CRC susceptibility in a Chinese Han population. Conclusion: rs2327429 and rs12190287 polymorphisms may be predictive of CRC susceptibility in Chinese Han populations.


Assuntos
Neoplasias Colorretais , Polimorfismo de Nucleotídeo Único , Humanos , Estudos de Casos e Controles , Genótipo , Neoplasias Colorretais/genética , China , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
6.
Ying Yong Sheng Tai Xue Bao ; 33(11): 2971-2978, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384831

RESUMO

Understanding the responses of soil enzyme activities to elevated CO2 concentration and warming can provide a scientific basis for nutrient management of croplands under global climate change. We conducted a pot expe-riment with climate chamber to examine the effects of elevated CO2 concentration and warming and winter wheat growth on soil enzyme activities. There were four climate scenarios: control (CK, 400 µmol·mol-1 CO2 concentration+normal ambient temperature), and CO2 concentration elevation (ECO2, 800 µmol·mol-1 CO2 concentration+normal ambient temperature), elevated temperature (ET, 400 µmol·mol-1 + temperature increased 4 ℃), and elevated CO2 concentration and temperature (ECO2+T, 800 µmol·mol-1 CO2 concentration + temperature increased 4 ℃). We measured the activities of soil ß-glucosidase (ßG), ß-N-acetyl glucosidase (NAG), alkaline phosphate (ALP) and polyphenol oxidase (PPO) at four growth stages (JS, jointing stage; AS, anthesis stage; FS, filling stage and MS, maturity stage), with and without winter wheat planting. Without winter wheat planting, there was no significant difference in four kinds of soil enzyme activities between ECO2 and CK, while ET and ECO2+T treatments had significant negative effect on soil enzyme activities. With winter wheat planting, compared with CK, ECO2 and ECO2+T treatments did not affect the activities of those four soil enzyme; but the ET treatment had great impact on soil ALP and PPO activities. The activities of four kinds of soil enzyme were significantly diffe-rent between the ET and ECO2+T treatments. Compared with ET treatment, ECO2+T treatment increased soil ßG activity at the JS, decreased NAG activity at the JS, increased ALP activity at both AS and FS, decreased PPO activity in the JS and increased in the AS. The interaction of elevated CO2 concentration and warming had significant effect on soil NAG and ALP activities with and without winter wheat planting. The interaction of warming and expe-rimental stage had significant effect on four kinds of soil enzyme activities without winter wheat planting, but the interaction of warming and crop growth stage had significant effect on ALP and PPO activities with winter wheat planting. The interaction of elevated CO2 concentration, warming and experimental period had significant effect on soil ßG, ALP and PPO activities without winter wheat growth, while with winter wheat growth, it had significant impact on NAG, ALP and PPO activities. The winter wheat growth had significantly inhibitory effect on ßG, NAG and ALP activities in the two early growth periods (JS+AS), significant promoting effect in the later growth periods (FS+MS), and significantly inhibitory effect on PPO activity during whole growth period. Overall, elevated CO2 concentration did not affect soil enzyme activities, while the elevation of CO2 concentration and temperature on soil enzyme activities differed among the soil enzymes at different growth stages. In addition, the responses of four soil enzyme activities to the interaction of elevated CO2 concentration and warming varied with and without winter wheat planting.


Assuntos
Solo , Triticum , Dióxido de Carbono , Estações do Ano , Temperatura
7.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293476

RESUMO

Mitochondrial DNA and nuclear DNA are essential genetic material which play an important role in maintaining normal metabolism, survival, and proliferation of cells. Constructing a mitochondria-targeting stimuli-responsive nano-drug delivery system releasing chemotherapeutic agents in a stepwise response manner and destroying mitochondrial DNA and nuclear DNA simultaneously is an effective way to improve the anti-tumor effect of chemotherapeutic agents. In this study, a new mitochondria-targeting pH/ROS dual-responsive block copolymer TPP-PEG2k-b-(BS-AA)n (P1), untargeted pH/ROS dual-responsive copolymer mPEG2k-b-(BS-AA)n (P2), pH single-responsive copolymer (mPEG2k-b-(AH-AA)n (P3), ROS single-responsive copolymer mPEG2k-b-(SA-TG)n (P4), and non-responsive copolymer mPEG-b-PCL (P5) were constructed. pH/ROS-responsive properties were characterized by proton nuclear magnetic resonance (1H NMR) and dynamic light scattering (DLS). Anticancer chemotherapeutic agent gemcitabine (GEM) or fluorescent substance Nile Red (NR) were loaded in the polymer micelles. Results of the mitochondrial colocalization experiment indicate that (5-carboxypentyl)(triphenyl)phosphonium bromide (TPP)-functionalized P1 micelles could be efficiently targeted and located in mitochondria. Results of the cellular uptake experiment showed that pH/ROS dual-responsive GEM-loaded P1 and P2 micelles have faster internalized and entry nucleus rates than single-responsive or non-responsive GEM-loaded micelles. The in vitro release experiment suggests pH/ROS dual-responsive GEM/P1 and GEM/P2 micelles have higher cumulative release than single-responsive GEM/P3 and GEM/P4 micelles. The in vitro cytotoxic experiment shows that the mitochondria-targeted dual-responsive GEM/P1 micelles had the lowest IC50 values, and the cytotoxic effect of dual-responsive GEM/P2 micelles was superior to the single-responsive and non-responsive drug-loaded micelles.


Assuntos
Antineoplásicos , Micelas , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Brometos/farmacologia , Prótons , Mitocôndrias/metabolismo , Antineoplásicos/química , Polietilenoglicóis/farmacologia , DNA Mitocondrial/metabolismo , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Gencitabina
8.
Acta Pharmacol Sin ; 43(10): 2573-2584, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35260820

RESUMO

Inflammatory activation and oxidative stress promote the proliferation of vascular smooth muscle cells (VSMCs), which accounts for pathological vascular remodeling in hypertension. ELABELA (ELA) is the second endogenous ligand for angiotensin receptor-like 1 (APJ) receptor that has been discovered thus far. In this study, we investigated whether ELA regulated VSMC proliferation and vascular remodeling in spontaneously hypertensive rats (SHRs). We showed that compared to that in Wistar-Kyoto rats (WKYs), ELA expression was markedly decreased in the VSMCs of SHRs. Exogenous ELA-21 significantly inhibited inflammatory cytokines and NADPH oxidase 1 expression, reactive oxygen species production and VSMC proliferation and increased the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) in VSMCs. Osmotic minipump infusion of exogenous ELA-21 in SHRs for 4 weeks significantly decreased diastolic blood pressure, alleviated vascular remodeling and ameliorated vascular inflammation and oxidative stress in SHRs. In VSMCs of WKY, angiotensin II (Ang II)-induced inflammatory activation, oxidative stress and VSMC proliferation were attenuated by pretreatment with exogenous ELA-21 but were exacerbated by ELA knockdown. Moreover, ELA-21 inhibited the expression of matrix metalloproteinase 2 and 9 in both SHR-VSMCs and Ang II-treated WKY-VSMCs. We further revealed that exogenous ELA-21-induced inhibition of proliferation and PI3K/Akt signaling were amplified by the PI3K/Akt inhibitor LY294002, while the APJ receptor antagonist F13A abolished ELA-21-induced PI3K/Akt inhibition and Nrf2 activation in VSMCs. In conclusion, we demonstrate that ELA-21 alleviates vascular remodeling through anti-inflammatory, anti-oxidative and anti-proliferative effects in SHRs, indicating that ELA-21 may be a therapeutic agent for treating hypertension.


Assuntos
Hipertensão , Hormônios Peptídicos , Remodelação Vascular , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Ligantes , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Receptores de Angiotensina/metabolismo , Remodelação Vascular/fisiologia
9.
Redox Biol ; 48: 102204, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34883403

RESUMO

Superoxide and vascular smooth muscle cells (VSMCs) migration and proliferation play crucial roles in the vascular remodeling. Vascular remodeling contributes to the development and complications of hypertension. Rho family GTPase 3 (RND3 or RhoE), an atypical small Rho-GTPase, is known to be involved in cancer development and metastasis. However, the roles of RND3 in superoxide production and cardiovascular remodeling are unknown. Here, we uncovered the critical roles of RND3 in attenuating superoxide production, VSMCs migration and proliferation, and vascular remodeling in hypertension and its underline mechanisms. VSMCs were isolated and prepared from thoracic aorta of Male Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). RND3 mRNA and protein expressions in arteries and VSMCs were down-regulated in SHR. RND3 overexpression in VSMCs reduced NAD(P)H oxidase (NOX) activity, NOX1 and NOX2 expressions, mitochondria superoxide generation, and H2O2 production in SHR. Moreover, the RND3 overexpression inhibited VSMCs migration and proliferation in SHR, which were similar to the effects of NOX1 inhibitor ML171 plus NOX2 inhibitor GSK2795039. Rho-associated kinase 1 (ROCK1) and RhoA expressions and myosin phosphatase targeting protein 1 (MYPT1) phosphorylation in VSMCs were increased in SHR, which were prevented by RND3 overexpression. ROCK1 overexpression promoted NOX1 and NOX2 expressions, superoxide and H2O2 production, VSMCs migration and proliferation in both WKY and SHR, which were attenuated by RND3 overexpression. Adenoviral-mediated RND3 overexpression in SHR attenuated hypertension, vascular remodeling and oxidative stress. These results indicate that RND3 attenuates VSMCs migration and proliferation, hypertension and vascular remodeling in SHR via inhibiting ROCK1-NOX1/2 and mitochondria superoxide signaling.

10.
Biomedicines ; 9(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440213

RESUMO

Oxidative stress and the migration of vascular smooth muscle cells (VSMCs) are important for vascular remodeling in a variety of vascular diseases. miR-31-5p promotes cell migration in colorectal cancer cells but inhibits cell migration in renal cell carcinoma. However, whether miR-31-5p is involved in oxidative stress and VSMC migration remains unknown. This study shows the crucial roles of miR-31-5p in oxidative stress and VSMC migration, as well as underlying mechanisms. Experiments were carried out in primary VSMCs from aortic media of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), as well as the A7r5 cell line. Oxidative stress was assessed by NADPH oxidase (NOX) expression, NOX activity, and reactive oxygen species (ROS) production. Cell migration was evaluated with a Boyden chamber assay and a wound healing assay. The miR-31-5p mimic and inhibitor promoted and attenuated oxidative stress and cell migration in the VSMCs of SHR, respectively. A dual-luciferase reporter assay indicated that miR-31-5p targeted the 3'UTR domain of FNDC5. The miR-31-5p level was raised and FNDC5 expression was reduced in the VSMCs of SHR compared with those of WKY. The miR-31-5p mimic reduced FNDC5 expression in the A7r5 cells and the VSMCs of both WKY and SHR, while the miR-31-5p inhibitor only increased FNDC5 expression in the VSMCs of SHR. Exogenous FNDC5 attenuated not only the oxidative stress and VSMC migration in SHR but also the roles of the miR-31-5p mimic in inducing oxidative stress and VSMC migration. These results indicate that miR-31-5p promotes oxidative stress and VSMC migration in SHR via inhibiting FNDC5 expression. The increased miR-31-5p and reduced FNDC5 in the VSMCs of SHR contribute to enhanced oxidative stress and cell migration.

11.
Anal Methods ; 13(18): 2099-2106, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33881062

RESUMO

Cysteine is widely used as a stabilizer for the preparation of fluorescent gold nanoclusters (Au NCs) with different fluorescence properties. Herein, by using cysteine as a stabilizer and controlling the synthesis conditions, a new non-fluorescent cysteine stabilized gold nanocluster (Cys-Au NCs) probe was prepared and a new strategy for "turning on" the fluorescence of the Cys-Au NCs was studied for rapid and selective detection of silver ions. In this strategy, the addition of silver ions to non-fluorescent Cys-Au NCs solution could quickly induce a visible fluorescence "turn on" phenomenon in 30 s. Further studies indicated that this fluorescence "turn on" phenomenon is specific for silver ions and the "turn on" fluorescence intensity has a linear relationship with the amount of silver ions in the range from 3.0 to 30.0 µM. Therefore, the non-fluorescent Cys-Au NCs were applied to the detection of silver ions in environmental water samples and a limit of detection (LOD) of 0.26 µM was obtained. This research sheds light on new applications of Au NCs and proposes a simple, rapid, sensitive, and visual method for the detection of metal ions.

13.
Pflugers Arch ; 472(11): 1577-1586, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915316

RESUMO

Chemical stimulation of kidney causes sympathetic activation and pressor responses in rats. The excitatory renal reflex (ERR) is mediated by angiotensin type 1 receptor (AT1R) and superoxide anions in hypothalamic paraventricular nucleus (PVN). The aim of this study is to determine whether interleukin-1ß (IL-1ß) in the PVN mediates the ERR, and whether the IL-1ß production in the PVN is dependent on the AT1R-superoxide anion signaling. Experiments were performed in adult rats under anesthesia. The ERR was induced by renal infusion of capsaicin, and evaluated by the responses of the contralateral renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP). Inhibition of IL-1ß production with MCC950 in the PVN dose-dependently inhibited the capsaicin-induced ERR and sympathetic activation. The PVN microinjection of IL-1 receptor antagonist IL-1Ra or specific IL-1ß antibody abolished the capsaicin-induced ERR, while IL-1ß enhanced the ERR. Renal infusion of capsaicin promoted p65-NFκB phosphorylation and IL-1ß production in the PVN, which were prevented by PVN microinjection of NADPH oxidase inhibitor apocynin or the superoxide anion scavenger tempol. The PVN microinjection of NFκB inhibitor BMS-345541 abolished the capsaicin induced-ERR and IL-1ß production, but not the NADPH oxidase activation and superoxide anion production. Furthermore, capsaicin-induced p65-NFκB phosphorylation and IL-1ß production in the PVN were prevented by AT1R antagonist losartan, or angiotensin converting enzyme inhibitor captopril. These results indicate that capsaicin-induced ERR and sympathetic activation are mediated by IL-1ß in the PVN. The IL-1ß production in the PVN is dependent on the AT1R-mediated superoxide anion generation and NFκB activation.


Assuntos
Interleucina-1beta/metabolismo , Rim/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Reflexo , Acetofenonas/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Sanguínea , Capsaicina/farmacologia , Inibidores Enzimáticos/farmacologia , Furanos/farmacologia , Imidazóis/farmacologia , Indenos/farmacologia , Rim/inervação , Losartan/farmacologia , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Sulfonamidas/farmacologia , Superóxidos/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo
14.
Oncogene ; 39(33): 5495-5506, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632220

RESUMO

RNA-binding proteins play key roles in the posttranscriptional regulation of mRNA during cancer progression. Here, we show that RNA-binding motif protein 43 (RBM43) is significantly downregulated in human tumors, and its low expression is correlated with poor prognosis in patients with HCC. Overexpression of RBM43 suppressed cell proliferation in culture and resulted in the growth arrest of tumor xenografts, whereas downregulating RBM43 played an opposite role. We have also demonstrated that overexpression or knockdown of RBM43 affects the cell-cycle progression of liver cancer cells. Mechanistically, RBM43 directly associated with the 3'UTR of Cyclin B1 mRNA and regulated its expression. Moreover, loss of Rbm43 in mice promoted liver carcinogenesis and HCC development after diethylnitrosamine (DEN)-carbon tetrachloride (CCl4) treatment. Taken together, our data indicate that RBM43 is a tumor suppressor that controls the cell cycle through modulation of Cyclin B1 expression, providing evidence that RBM43 is particularly important in HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ciclina B1/biossíntese , Neoplasias Hepáticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ciclina B1/genética , Regulação para Baixo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Antioxidants (Basel) ; 9(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121598

RESUMO

Migration of vascular smooth muscle cells (VSMCs) is essential for vascular reconstruction in hypertension and several vascular diseases. Our recent study showed that extracellular vesicles derived from vascular adventitial fibroblasts of normal rats inhibited VSMC proliferation by delivering miR155-5p to VSMCs. It is unknown whether miR155-5p inhibits cell migration and oxidative stress in VSMCs of spontaneously hypertensive rats (SHR) and in angiotensin II (Ang II)-treated VSMCs. The purpose of this study was to determine the role of miR155-5p in VSMC migration and its underlying mechanisms. Primary VSMCs were isolated from the aortic media of Wistar-Kyoto rats (WKY) and SHR. Wound healing assay and Boyden chamber assay were used to evaluate VSMC migration. A miR155-5p mimic inhibited, and a miR155-5p inhibitor promoted the migration of VSMC of SHR but had no significant effect on the migration of VSMC of WKY. The miR155-5p mimic inhibited angiotensin-converting enzyme (ACE) mRNA and protein expression in VSMCs. It also reduced superoxide anion production, NAD(P)H oxidase (NOX) activity, as well as NOX2, interleukin-1ß (IL-1ß), and tumor necrosis factor α (TNF-α) expression levels in VSMCs of SHR but not in VSMCs of WKY rats. Overexpression of miR155-5p inhibited VSMC migration and superoxide anion and IL-1ß production in VSMCs of SHR but had no impact on exogenous Ang II-induced VSMC migration and on superoxide anion and IL-1ß production in WKY rats and SHR. These results indicate that miR155-5p inhibits VSMC migration in SHR by suppressing ACE expression and its downstream production of Ang II, superoxide anion, and inflammatory factors. However, miR155-5p had no effects on exogenous Ang II-induced VSMC migration.

16.
Neurosci Bull ; 36(5): 463-474, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31989424

RESUMO

Chemical stimulation of the kidney increases sympathetic activity and blood pressure in rats. The hypothalamic paraventricular nucleus (PVN) is important in mediating the excitatory renal reflex (ERR). In this study, we examined the role of molecular signaling in the PVN in mediating the capsaicin-induced ERR and sympathetic activation. Bilateral PVN microinjections were performed in rats under anesthesia. The ERR was elicited by infusion of capsaicin into the cortico-medullary border of the right kidney. The reflex was evaluated as the capsaicin-induced changes in left renal sympathetic nerve activity and mean arterial pressure. Blockade of angiotensin type 1 receptors with losartan or inhibition of angiotensin-converting enzyme with captopril in the PVN abolished the capsaicin-induced ERR. Renal infusion of capsaicin significantly increased NAD(P)H oxidase activity and superoxide anion production in the PVN, which were prevented by ipsilateral renal denervation or microinjection of losartan into the PVN. Furthermore, either scavenging of superoxide anions or inhibition of NAD(P)H oxidase in the PVN abolished the capsaicin-induced ERR. We conclude that the ERR induced by renal infusion of capsaicin is mediated by angiotensin type 1 receptor-related NAD(P)H oxidase activation and superoxide anion production within the PVN.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Capsaicina/farmacologia , Rim/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Reflexo/efeitos dos fármacos , Superóxidos/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Acetofenonas/farmacologia , Acetilcisteína/farmacologia , Alopurinol/farmacologia , Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea/fisiologia , Captopril/farmacologia , Ditiocarb/farmacologia , Rim/inervação , Rim/fisiologia , Losartan/farmacologia , Masculino , NADPH Oxidases/antagonistas & inibidores , Oniocompostos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina , Reflexo/fisiologia
17.
Front Oncol ; 10: 548132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643893

RESUMO

Although the combination of immune checkpoint blockades with high dose of radiation has indicated the potential of co-stimulatory effects, consistent clinical outcome has been yet to be demonstrated. Bulky tumors present challenges for radiation treatment to achieve high rate of tumor control due to large tumor sizes and normal tissue toxicities. As an alternative, spatially fractionated radiotherapy (SFRT) technique has been applied, in the forms of GRID or LATTICE radiation therapy (LRT), to safely treat bulky tumors. When used alone in a single or a few fractions, GRID or LRT can be best classified as palliative or tumor de-bulking treatments. Since only a small fraction of the tumor volume receive high dose in a SFRT treatment, even with the anticipated bystander effects, total tumor eradications are rare. Backed by the evidence of immune activation of high dose radiation, it is logical to postulate that the combination of High-Dose LATTICE radiation therapy (HDLRT) with immune checkpoint blockade would be effective and could subsequently lead to improved local tumor control without added toxicities, through augmenting the effects of radiation in-situ vaccine and T-cell priming. We herein present a case of non-small cell lung cancer (NSCLC) with multiple metastases. The patient received various types of palliative radiation treatments with combined chemotherapies and immunotherapies to multiple lesions. One of the metastatic lesions measuring 63.2 cc was treated with HDLRT combined with anti-PD1 immunotherapy. The metastatic mass regressed 77.84% over one month after the treatment, and had a complete local response (CR) five months after the treatment. No treatment-related side effects were observed during the follow-up exams. None of the other lesions receiving palliative treatments achieved CR. The dramatic differential outcome of this case lends support to the aforementioned postulate and prompts for further systemic clinical studies.

18.
World J Clin Cases ; 7(10): 1177-1183, 2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31183350

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) accounts for 15% of lung cancers, and it commonly expresses peptide and protein factors that are active as hormones. These secreting factors manifest as paraneoplastic disorders, such as ectopic adrenocorticotropic hormone (ACTH) syndrome (EAS). The clinical features are abnormalities in carbohydrate metabolism, hypokalemia, peripheral edema, proximal myopathy, hypertension, hyperpigmentation, and severe systemic infection. However, it is uncommon that EAS has an influence on hypothalamus-pituitary function. CASE SUMMARY: A 62-year-old man presented with complaints of haemoptysis, polyuria, polydipsia, increased appetite, weight loss, and pigmentation. Following a series of laboratory and imaging examinations, he was diagnosed with SCLC, EAS, hypogonadism, hypothyroidism, and central diabetes insipidus. After three rounds of chemotherapy, levels of ACTH, cortisol, thyroid hormone, gonadal hormone, and urine volume had returned to normal levels. In addition, the pulmonary tumor was reduced in size. CONCLUSION: We report a rare case of SCLC complicated with panhypopituitarism due to EAS. We hypothesize that EAS induced high levels of serum glucocorticoid and negative feedback for the synthesis and secretion of antidiuretic hormone from the paraventricular nucleus, and trophic hormones from the anterior pituitary. Therefore, patients who present with symptoms of hypopituitarism, or even panhypopituitarism, with SCLC should be evaluated for EAS.

19.
Bioorg Med Chem Lett ; 27(8): 1808-1814, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274630

RESUMO

The synthesis of a series of novel 4-substituted 2,3,6,7-tetrahydrobenzo [1,2-b;4,5-b']difuran-1H-imidazolium salts is presented. The biological properties of the compounds were evaluated in vitro against a panel of human tumor cell lines. Results suggest that the 5,6-dimethyl-benzimidazole or 2-methyl-benzimidazole ring, and substitution of the imidazolyl-3-position with a 2-naphthylmethyl substituent or 2-naphthylacyl substituent, were important to the cytotoxic activity. Notably, 3-(2-Naphthylmethyl)-1-((2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b']difuran-4-yl)methyl)-1H-5,6-dimethyl-benzimidazol-3-ium bromide (42) was found to be the most potent derivative against five human tumor cell lines with IC50 values of 1.06-4.34µM and more selective towards SMMC-7721, A549 and SW480 cell lines. 3-(2-Naphthylacyl)-1-((2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b']difuran-4-yl)methyl)-1H-2-methyl-benzimidazol-3-ium bromide (37) showed higher selectivity to SMMC-7721 and MCF-7 cell lines with IC50 values 2.7-fold and 8.4-fold lower than DDP. Study regarding to the antitumor mechanism of action showed that compound 37 could induce cell cycle G1 phase arrest and apoptosis in SMMC-7721 cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzofuranos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Modelos Moleculares , Relação Estrutura-Atividade
20.
Org Biomol Chem ; 14(39): 9423-9430, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714171

RESUMO

The synthesis of a series of novel N-substituted tetrahydro-ß-carboline-imidazolium salt derivatives is presented. The biological properties of the compounds were evaluated in vitro against a panel of human tumor cell lines. The results suggest that the benzimidazole ring and 1-(naphthalen-2-yl)ethan-1-one or 2-naphthylmethyl substituent at the imidazolyl-3-position were vital for modulating cytotoxic activity. Compound 41 was observed as a potent derivative with IC50 values of 3.24-8.78 µM and exhibited cytotoxic activity selectively against HL-60, A-549 and MCF-7 cell lines. Meanwhile, high inhibitory activities selectively against HL-60 and MCF-7 cell lines were observed for compound 51. Moreover, compound 51 was able to induce G1 phase cell cycle arrest and apoptosis in MCF-7 cells. The cytotoxicity of compound 51 against human normal lung epithelial cell line BEAS-2B was further evaluated.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Imidazóis/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzimidazóis/química , Carbolinas/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HL-60 , Humanos , Células MCF-7 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA