Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 364-372, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768549

RESUMO

Improving the conductivity of the electrocatalyst itself is essential for enhancing its performance. In this work, N, S-rich 6-thioguanine (TG) is selected as the ligand to synthesize a Fe, Ni bimetallic porous coordination polymer (PCP), which is then derived to fabricate N,S codoped carbon (NSC)-coated (Fe,Ni)9S8/Ni3S2 bridged nanowires. The (Fe,Ni)9S8/Ni3S2@NSC bridged nanowires obtained through bimetallic synergistic catalysis and self-sulfurization processes not only introduced additional electrocatalytic active sites but also significantly enhance the overall conductivity of the catalyst due to the interconnected nanowire structure. The resulting (Fe,Ni)9S8/Ni3S2@NSC demonstrates remarkable oxygen evolution reaction (OER) performance, exhibiting an overpotential as low as 252 mV at a current density of 10 mA cm-2. This work proposes a novel strategy for enhancing the overall conductivity of catalysts by growing bridged nanowires, providing valuable insights and inspiration for the design and preparation of advanced transition metal sulfide electrocatalysts.

2.
Chem Sci ; 15(5): 1829-1839, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303939

RESUMO

Developing a comprehensive strategy for imaging various biomarkers (i.e., microRNAs and proteases) in vivo is an exceptionally formidable task. Herein, we have designed a deoxyribonucleic acid-gold nanocluster (DNA-AuNC) nanomachine for detecting tumor-related TK1 mRNA and cathepsin B in living cells and in vivo. The DNA-AuNC nanomachine is constructed using AuNCs and DNA modules that incorporate a three component DNA hybrid (TD) and a single-stranded fuel DNA (FD). Upon being internalized into tumor cells, the TK1 mRNA initiates the DNA-AuNC nanomachine through DNA strand displacement cascades, leading to the amplified self-assembly and the aggregation-enhanced emission of AuNCs for in situ imaging. Furthermore, with the aid of a protease nanomediator consisting of a mediator DNA/peptide complex and AuNCs (DpAuNCs), the DNA-AuNC nanomachine can be triggered by the protease-activated disassembly of the DNA/peptide complex on the nanomediator, resulting in the aggregation of AuNCs for in vivo protease amplified detection. It is worth noting that our study demonstrates the impressive tumor permeability and accumulation capabilities of the DNA-AuNC nanomachines via in situ amplified self-assembly, thereby facilitating prolonged imaging of TK1 mRNA and cathepsin B both in vitro and in vivo. This strategy presents a versatile and biomarker-specific paradigm for disease diagnosis.

3.
Anal Chem ; 95(47): 17392-17399, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961783

RESUMO

Combining targeting ability, imaging function, and photothermal/photodynamic therapy into a single agent is highly desired for cancer theranostics. Herein, we developed a one-for-all nanoplatform with N/P/S-codoped fluorescent carbon nanodots (CNDs) for tumor-specific phototheranostics. The CNDs were prepared via a one-pot hydrothermal process using cancer cells as sources of carbon, nitrogen, phosphorus, and sulfur. The obtained N/P/S-codoped CNDs exhibit wide light absorption in the range of 200-900 nm and excitation-dependent emission with high photostability. Importantly, the cancer cell-derived N/P/S-codoped CNDs have outstanding biocompatibility and naturally intrinsic targeted ability for cancer cells as well as dual photothermal/photodynamic effects under 795 nm laser irradiation. Moreover, the photothermal conversion efficiency and singlet oxygen (1O2) generation efficiency were calculated to be 52 and 34%, respectively. These exceptional properties enable CNDs to act as fine theranostic agents for targeted imaging and photothermal-photodynamic synergistic therapy within the NIR therapeutic window. The CNDs prepared in this work are promising for construction as a universal tumor phototheranostic platform.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Carbono/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Medicina de Precisão , Corantes , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral
4.
Adv Healthc Mater ; 12(31): e2302016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713653

RESUMO

Multimodal cancer therapies show great promise in synergistically enhancing anticancer efficacy through different mechanisms. However, most current multimodal therapies either rely on complex assemblies of multiple functional nanomaterials and drug molecules or involve the use of nanomedicines with poor in vivo degradability/metabolizability, thus restricting their clinical translatability. Herein, a nanoflower-medicine using iron ions, thioguanine (TG), and tetracarboxylic porphyrin (TCPP) are synthesized as building blocks through a one-step hydrothermal method for combined chemo/chemodynamic/photodynamic cancer therapy. The resulting nanoflowers, consisting of low-density Fe2 O3 core and iron complex (Fe-TG and Fe-TCPP compounds) shell, exhibit high accumulation at the tumor site, desirable degradability in the tumor microenvironment (TME), robust suppression of tumor growth and metastasis, as well as effective reinvigoration of host antitumor immunity. Triggered by the low pH in tumor microenvironment, the nanoflowers gradually degrade after internalization, contributing to the effective drug release and initiation of high-efficiency catalytic reactions precisely in tumor sites. Moreover, iron ions can be eliminated from the body through renal clearance after fulfilling their mission. Strikingly, it is also found that the multimodal synergistic therapy effectively elicits the host antitumor immunity without inducing additional toxicity. This easy-manufactured and degradable multimodal therapeutic nanomedicine is promising for clinical precision oncology.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Microambiente Tumoral , Medicina de Precisão , Íons/uso terapêutico , Ferro , Linhagem Celular Tumoral
5.
Biomaterials ; 301: 122263, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549506

RESUMO

The in-situ generation of therapeutic agents in targeted lesions is promising for revolutionizing oncotherapy but is limited by the low production efficiency. Given the specific tumor microenvironment (TME) of colorectal cancer (CRC), i.e., mild acidity, overexpressed H2O2, glutathione (GSH) and H2S, we develop phycocyanin (PC) encapsulated PZTC/SS/HA nanocapsules (NCs) for TME-responsive, protein-assisted "turn-on'' therapy of CRC. The NCs are prepared by sequentially assembling Cu2+-tannic acid (TA) coordination shell, disulfide bond-bearing cross-linker, and hyaluronic acid (HA) on the sacrificial template ZIF-8, thus achieving pH-, GSH-responsiveness, and tumor targeting capability, respectively. Once reaching the CRC sites, the NCs can quickly disintegrate and release Cu2+ and PC, accompanied by subsequent endogenous H2S-triggered generation of copper sulfide (CuS). Significantly, the intracellular sulfidation process can be accelerated by PC, thereby enabling efficient photothermal therapy (PTT) under NIR-Ⅱ laser. Besides, Cu2+-associated chemodynamic therapy (CDT) can be simultaneously activated and enhanced by PTT-induced local hyperthermia and disulfide bond-induced GSH consumption. This CRC-targeted and TME-activated synergistic PTT/CDT strategy displays high therapeutic efficacy both in vitro and in vivo, which can open up a new avenue for biomolecule-assisted in-situ nanoagent generation and effective TME-responsive synergistic treatment of CRC.


Assuntos
Neoplasias Colorretais , Nanocápsulas , Nanopartículas , Neoplasias , Humanos , Ficocianina/uso terapêutico , Cobre , Peróxido de Hidrogênio , Microambiente Tumoral , Glutationa , Ácido Hialurônico , Neoplasias Colorretais/tratamento farmacológico , Dissulfetos , Linhagem Celular Tumoral
6.
Anal Chem ; 94(25): 9074-9080, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35694855

RESUMO

Fluorescent silicon nanodots have shown great prospects for bioimaging and biosensing applications. Although various fluorescent silicon-containing nanodots (SiNDs) have been developed, there are few reports about renal-clearable multicolor SiNDs. Herein, renal-clearable multicolor fluorescent SiNDs are synthesized by using silane molecules and organic dyes through a facile one-step hydrothermal method. The fluorescence of the resulting SiNDs can be tuned to blue (bSiNDs), green (gSiNDs), and red (rSiNDs) by simply changing the categories of silane reagents or dye molecules. The as-prepared SiNDs exhibit strong fluorescence with a quantum yield up to 72%, excellent photostability, and good biocompatibility with 12 h renal clearance rate as high as 86% ID. These properties enabled the SiNDs for tumor fluorescence imaging and H2O2 imaging in living cells and tissue through in situ reduction reaction-lighted fluorescence of the nanoprobe. Our results provide an invaluable methodology for the synthesis of renal-clearable multicolor SiNDs and their potential applications for fluorescence imaging and biomarker sensing. These SiNDs are also promising for various biological and biomedical applications.


Assuntos
Neoplasias , Pontos Quânticos , Corantes , Corantes Fluorescentes , Humanos , Peróxido de Hidrogênio , Neoplasias/diagnóstico por imagem , Imagem Óptica , Silanos , Silício
7.
Analyst ; 146(16): 5115-5123, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34269357

RESUMO

Dynamically monitoring intracellular glutathione (GSH), a crucial biomarker of oxidative stress, is of significance for the diagnosis and treatment of certain diseases. Although manganese dioxide (MnO2) based GSH fluorescent sensors have exhibited high sensitivity and good selectivity owing to the specific reactivity between GSH and MnO2, near-infrared (NIR) MnO2 based nanoprobes for GSH detection are scarce. Herein, we have developed a NIR activatable fluorescence nanoprobe for the imaging and determination of intracellular GSH based on a core-shell nanoparticle, consisting of NIR emitted gold nanocluster doped silica as the fluorescent core and manganese dioxide as the GSH-responsive shell (named AuNCs@MnO2). Due to the absorption competition mechanism, the outer MnO2 shell rather than the inner AuNCs core preferentially absorbed the excitation light, thus leading to fluorescence quenching of the inner AuNCs core. Upon addition of GSH, the fluorescence of the nanoprobe restored along with the reduction of MnO2 to Mn2+ because of the absorption competition disappearance-induced emission. The activatable fluorescence linearly increased upon changing the GSH concentration in the range of 2 to 5000 µM with a detection limit of 0.67 µM. The cytotoxicity test shows that the AuNCs@MnO2 nanoprobes have a good biocompatibility. After entering the cancer cells, the intracellular GSH degraded the outermost MnO2 shell and initiated the NIR fluorescence restoration of AuNCs, which can be used to monitor the dynamic change of intracellular GSH. This strategy provides an NIR-activatable way to detect GSH levels in living cells and offers a promising platform for the diagnosis and treatment of GSH-related diseases.


Assuntos
Nanopartículas , Pontos Quânticos , Glutationa , Humanos , Compostos de Manganês , Nanopartículas/toxicidade , Óxidos/toxicidade
8.
Angew Chem Int Ed Engl ; 60(39): 21565-21574, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34322988

RESUMO

Protein kinases constitute a rich pool of biomarkers and therapeutic targets of tremendous diseases including cancer. However, sensing kinase activity in vivo while implementing treatments according to kinase hyperactivation remains challenging. Herein, we present a nanomediator-effector cascade system that can in situ magnify the subtle events of kinase-catalyzed phosphorylation via DNA amplification machinery to achieve kinase activity imaging and kinase-responsive drug release in vivo. In this cascade, the phosphorylation-mediated disassembly of DNA/peptide complex on the nanomediators initiated the detachment of fluorescent hairpin DNAs from the nanoeffectors via hybridization chain reaction (HCR), leading to fluorescence recovery and therapeutic cargo release. We demonstrated that this nanosystem simultaneously enabled trace protein kinase A (PKA) activity imaging and on-demand drug delivery for inhibition of tumor cell growth both in vitro and in vivo, affording a kinase-specific sense-and-treat paradigm for cancer theranostics.


Assuntos
Antibióticos Antineoplásicos/farmacologia , DNA/química , Doxorrubicina/farmacologia , Nanopartículas/química , Técnicas de Amplificação de Ácido Nucleico , Peptídeos/química , Proteínas Quinases/metabolismo , Antibióticos Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Nanopartículas/metabolismo , Hibridização de Ácido Nucleico , Imagem Óptica , Peptídeos/metabolismo , Fosforilação , Proteínas Quinases/análise
9.
ACS Nano ; 13(11): 12577-12590, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31657911

RESUMO

In vivo monitoring of cargo protein delivery is critical for understanding the pharmacological efficacies and mechanisms during cancer therapy, but it still remains a formidable challenge because of the difficulty in observing nonfluorescent proteins at high resolution and sensitivity. Here we report an outer-frame-degradable nanovehicle featuring near-infrared (NIR) dual luminescence for real-time tracking of protein delivery in vivo. Upconversion nanoparticles (UCNPs) and fluorophore-doped degradable macroporous silica (DS) with spectral overlap were coupled to form a core-shell nanostructure as a therapeutic protein nanocarrier, which was eventually enveloped with a hyaluronic acid (HA) shell to prevent protein leakage and for recognizing tumor sites. The DS layer served as both a container to accommodate the therapeutic proteins and a filter to attenuate upconversion luminescence (UCL) of the inner UCNPs. After the nanovehicles selectively accumulated at tumor sites and entered cancer cells, intracellular hyaluronidase (HAase) digested the outermost HA protective shell and initiated the outer frame degradation-induced protein release and UCL restoration of UCNPs in the intracellular environment. Significantly, the biodistribution of the nanovehicles can be traced at the 710 nm NIR fluorescence channel of DS, whereas the protein release can be monitored at the 660 nm NIR fluorescence channel of UCNPs. Real-time tracking of protein delivery and release was achieved in vitro and in vivo by NIR fluorescence imaging. Moreover, in vitro and in vivo studies manifest that the protein cytochrome c-loaded nanovehicles exhibited excellent cancer therapeutic efficacy. This nanoplatform assembled by the outer-frame-degradable nanovehicles featuring NIR dual luminescence not only advances our understanding of where, when, and how therapeutic proteins take effect in vivo but also provides a universal route for visualizing the translocation of other bioactive macromolecules in cancer treatment and intervention.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Substâncias Luminescentes , Nanoestruturas/química , Neoplasias/metabolismo , Proteínas Recombinantes , Animais , Feminino , Células HeLa , Humanos , Ácido Hialurônico/química , Raios Infravermelhos , Substâncias Luminescentes/análise , Substâncias Luminescentes/química , Substâncias Luminescentes/farmacocinética , Camundongos , Camundongos Nus , Células NIH 3T3 , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Imagem Individual de Molécula/métodos
10.
ACS Appl Mater Interfaces ; 9(42): 36655-36664, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28975792

RESUMO

A precisely controlled drug release is a great challenge in exploring methodologies of drug administration and fighting drug resistance for successful cancer chemotherapy. Herein, we developed a dual-mode nanocarrier to specifically deliver doxorubicin (Dox) and precisely control the drug release in target tumor cells. This hierarchical nanocarrier consisted of a gold nanorod as the heating core, biodegradable mesoporous silica as the storage chamber, and graphene quantum dot (GQD) as a drug carrier. The Arg-Gly-Asp peptides on the nanocarrier surface facilitated the specific interaction with integrin-overexpressed tumor cells and subsequent uptake via receptor-mediated endocytosis. Once exposed under the near-infrared (NIR) laser, the internalized nanocarrier rapidly heated the surrounding environment, which led to an instantaneous drug release by collapsing the π-π interaction between Dox and GQDs at high temperature and thereby intensified therapeutic efficacy. On the other hand, the silica shells underwent gradual degradation in the cellular matrix environment, along with stepwise liberation of the embedded GQD-Dox composites from the confined porous structure for the Dox release, exerting a long-term lethality to the tumor cells. By virtue of the physicochemical properties and synergistic behavior of the multiple components in this hierarchical nanocarrier, the NIR-triggered prompt release mode and the biodegradation-mediated slow release mode functioned in a precise and collaborative fashion, providing a promising way to manipulate the pharmacokinetics for precise cancer treatment.


Assuntos
Sistemas de Liberação de Medicamentos , Doxorrubicina , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Nanopartículas , Neoplasias , Dióxido de Silício
11.
Anal Chem ; 87(23): 11739-45, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26524192

RESUMO

Great challenges in investigating the release of drug in complex cellular microenvironments necessitate the development of stimuli-responsive drug delivery systems with real-time monitoring capability. In this work, a smart drug nanocarrier based on fluorescence resonance energy transfer (FRET) is fabricated by capping graphene quantum dots (GQDs, the acceptor) onto fluorescent mesoporous silica nanoparticles (FMSNs, the donor) via ATP aptamer for real-time monitoring of ATP-triggered drug release. Under extracellular conditions, the fluorescence of FMSNs remains in the "off" state in the low ATP level which is unable to trigger the release of drug. Once specifically recognized and internalized into the target tumor cells by AS1411 aptamer, in the ATP-rich cytoplasm, the conformation switch of the ATP aptamer causes the shedding of the GQDs from the nanocarriers, leading to the release of the loaded drugs and consequently severe cytotoxicity. Simultaneously, the fluorescence of FMSNs turns "on" along with the dissociation of GQDs, which allows real-time monitoring of the release of drug from the pores. Such a drug delivery system features high specificity of dual-target recognition with AS1411 and ATP aptamer as well as high sensitivity of the FRET-based monitoring strategy. Thus, the proposed multifunctional ATP triggered FRET-nanocarriers will find potential applications for versatile drug-release monitoring, efficient drug transport, and targeted cancer therapeutics.


Assuntos
Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Grafite/química , Pontos Quânticos , Dióxido de Silício/química , Trifosfato de Adenosina/química , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Fluorescência , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Porosidade , Relação Estrutura-Atividade , Fatores de Tempo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA