Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 313: 198747, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314201

RESUMO

The E2 glycoprotein of classical swine fever virus (CSFV) plays multiple roles in the viral life cycle. The chimeric live attenuated C strain with the E2 substitution of bovine viral diarrhea virus (BVDV) is a promising marker vaccine candidate. In this study, the recombinant chimeric CSFV/bE2 cDNA clone harboring heterologous E2 (bE2) of BVDV was constructed by genetic approaches. Recombinant infectious virus rCSFV/bE2 (P11) was recovered by 11 serial passages of transfected PK15 cells. Viral genome sequencing showed that a glutamic acid to glycine mutation (E260G) at position 260 of the bE2 was observed in rCSFV/bE2 P11. Alignment of amino acid sequences displayed that the glycine was one of three conserved residues in pestivirus E2. When the glutamic acid to glycine substitution (E260G) was introduced into chimeric CSFV/bE2 cDNA clone, the high-titer infectious rCSFV/bE2E260G was rescued. The glycine to glutamic acid substitution at corresponding position in CSFV E2 resulted in significantly decreased rCSFV/E2G259E production. We further identified that the conserved E2 residue G259 played a critical role in the release and binding activity of CSFV and that the E2 residues G259 and V111 modulated synergistically infectious virus production and replication.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vírus da Diarreia Viral Bovina , Pestivirus , Animais , Vírus da Febre Suína Clássica/genética , Vírus da Diarreia Viral Bovina/genética , Suínos , Proteínas do Envelope Viral
2.
Arch Virol ; 166(6): 1633-1642, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33787991

RESUMO

Pestivirus nonstructural protein 3 (NS3) is a multifunctional protein with protease and helicase activities that are essential for virus replication. In this study, we used a combination of biochemical and genetic approaches to investigate the relationship between a positively charged patch on the protease module and NS3 function. The surface patch is composed of four basic residues, R50, K74 and K94 in the NS3 protease domain and H24 in the structurally integrated cofactor NS4APCS. Single-residue or simultaneous four-residue substitutions in the patch to alanine or aspartic acid had little effect on ATPase activity. However, single substitutions of R50, K94 or H24 or a simultaneous four-residue substitution resulted in apparent changes in the helicase activity and RNA-binding ability of NS3. When these mutations were introduced into a classical swine fever virus (CSFV) cDNA clone, a single substitution at K94 or a simultaneous four-residue substitution (Qua_A or Qua_D) impaired the production of infectious virus. Furthermore, the replication efficiency of the CSFV variants was partially correlated with the helicase activity of NS3 in vitro. Our results suggest that the conserved positively charged patch on NS3 plays an important role in modulating the NS3 helicase activity in vitro and CSFV production.


Assuntos
Pestivirus/fisiologia , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Adenosina Trifosfatases , Sequência de Aminoácidos , Substituição de Aminoácidos , Escherichia coli , Regulação Viral da Expressão Gênica , Modelos Moleculares , Mutação , Pestivirus/genética , Conformação Proteica , RNA Helicases/genética , Serina Endopeptidases/metabolismo , Replicação Viral
3.
Proc Natl Acad Sci U S A ; 117(48): 30344-30353, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203675

RESUMO

The DNA polymerase (Pol) δ of Saccharomyces cerevisiae (S.c.) is composed of the catalytic subunit Pol3 along with two regulatory subunits, Pol31 and Pol32. Pol δ binds to proliferating cell nuclear antigen (PCNA) and functions in genome replication, repair, and recombination. Unique among DNA polymerases, the Pol3 catalytic subunit contains a 4Fe-4S cluster that may sense the cellular redox state. Here we report the 3.2-Šcryo-EM structure of S.c. Pol δ in complex with primed DNA, an incoming ddTTP, and the PCNA clamp. Unexpectedly, Pol δ binds only one subunit of the PCNA trimer. This singular yet extensive interaction holds DNA such that the 2-nm-wide DNA threads through the center of the 3-nm interior channel of the clamp without directly contacting the protein. Thus, a water-mediated clamp and DNA interface enables the PCNA clamp to "waterskate" along the duplex with minimum drag. Pol31 and Pol32 are positioned off to the side of the catalytic Pol3-PCNA-DNA axis. We show here that Pol31-Pol32 binds single-stranded DNA that we propose underlies polymerase recycling during lagging strand synthesis, in analogy to Escherichia coli replicase. Interestingly, the 4Fe-4S cluster in the C-terminal CysB domain of Pol3 forms the central interface to Pol31-Pol32, and this strategic location may explain the regulation of the oxidation state on Pol δ activity, possibly useful during cellular oxidative stress. Importantly, human cancer and other disease mutations map to nearly every domain of Pol3, suggesting that all aspects of Pol δ replication are important to human health and disease.


Assuntos
DNA Polimerase III/química , DNA Polimerase III/metabolismo , DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Microscopia Crioeletrônica , DNA/química , DNA Polimerase III/ultraestrutura , Didesoxinucleotídeos/química , Didesoxinucleotídeos/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Mutação/genética , Neoplasias/genética , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo
4.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835495

RESUMO

The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein.IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different conformational states.


Assuntos
DNA Helicases/metabolismo , Pestivirus/enzimologia , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Cristalografia por Raios X , DNA Helicases/química , Modelos Moleculares , Infecções por Pestivirus/metabolismo , Infecções por Pestivirus/virologia , Conformação Proteica , RNA Helicases/química , Homologia de Sequência , Serina Endopeptidases/química , Especificidade por Substrato , Suínos , Proteínas não Estruturais Virais/química
5.
Mol Med Rep ; 15(5): 3001-3010, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28339015

RESUMO

Diffuse axonal injury (DAI) is the most common and significant pathological features of traumatic brain injury (TBI). However, there are still no effective drugs to combat the formation and progression of DAI in affected individuals. FK506, also known as tacrolimus, is an immunosuppressive drug, which is widely used in transplantation medicine for the reduction of allograft rejection. Previous studies have identified that FK506 may play an important role in the nerve protective effect of the central nervous system. In the present study, apoptosis of neuronal cells was observed following the induction of experimental DAI. The results demonstrated that it was closely related with the upregulation of death­associated protein kinase 1 (DAPK1). It was hypothesized that FK506 may inhibit the activity of DAPK1 by inhibiting calcineurin activity, which may be primarily involved in anti­apoptosis following DAI induction. Through researching the expression of nerve regeneration associated proteins (NF­H and GAP­43) following DAI, the present study provides novel data to suggest that FK506 promotes axon formation and nerve regeneration following experimental DAI. Therefore, FK506 may be a potent therapeutic for inhibiting nerve injury, as well as promoting the nerve regeneration following DAI.


Assuntos
Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Lesão Axonal Difusa/tratamento farmacológico , Tacrolimo/farmacologia , Animais , Axônios/metabolismo , Axônios/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Calcineurina/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/metabolismo , Lesão Axonal Difusa/metabolismo , Lesão Axonal Difusa/patologia , Proteína GAP-43/metabolismo , Masculino , Regeneração Nervosa/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA