Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Inflammation ; 47(1): 323-332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819455

RESUMO

Inflammatory response in the pulmonary endothelium drives the pathogenesis of acute lung injury and sepsis. Sirtuin 6 (SIRT6), a member of class III NAD+-dependent deacetylases belonging to the sirtuin family, regulates senescence, metabolism, and inflammation and extends lifespan in mice and model organisms. However, the role of SIRT6 in pulmonary endothelial inflammation is unknown. Thus, we hypothesized that SIRT6 suppresses inflammatory response in human lung microvascular cells (HLMEC) and ensues monocyte adhesion to endothelial cells. Primary HLMECs were treated with control or SIRT6 adenovirus or SIRT6 agonist, with or without lipopolysaccharide (LPS) treatment. We observed that treatment with LPS did not affect the protein expression of SIRT6 in HLMECs. However, adenovirus-mediated SIRT6 overexpression attenuated LPS-induced VCAM1 gene and protein expression, followed by decreased monocyte adhesion to endothelial cells. Similarly, activation of SIRT6 by a recently reported SIRT6 activator UBCS039, but not the regioisomer negative control compound UBCS060, ameliorated LPS-induced VCAM1 mRNA and protein expression as well as monocyte adhesion. Moreover, luciferase assay revealed that SIRT6 adenovirus decreased the activity of NF-κB, the master regulator of vascular inflammation. Taken together, these results indicate that molecular and pharmacological activation of SIRT6 protects against lung microvascular inflammation via suppressing NF-κB activation, implicating the therapeutic potential of the SIRT6 activators for lung disorders associated with microvascular inflammation.


Assuntos
Pneumonia , Sirtuínas , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Células Endoteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Inflamação/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/metabolismo , Pulmão/metabolismo , Endotélio Vascular/metabolismo
2.
Eur Heart J ; 44(20): 1818-1833, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36469488

RESUMO

AIMS: Variants of the junctional cadherin 5 associated (JCAD) locus associate with acute coronary syndromes. JCAD promotes experimental atherosclerosis through the large tumor suppressor kinase 2 (LATS2)/Hippo pathway. This study investigates the role of JCAD in arterial thrombosis. METHODS AND RESULTS: JCAD knockout (Jcad-/-) mice underwent photochemically induced endothelial injury to trigger arterial thrombosis. Primary human aortic endothelial cells (HAECs) treated with JCAD small interfering RNA (siJCAD), LATS2 small interfering RNA (siLATS2) or control siRNA (siSCR) were employed for in vitro assays. Plasma JCAD was measured in patients with chronic coronary syndrome or ST-elevation myocardial infarction (STEMI). Jcad-/- mice displayed reduced thrombogenicity as reflected by delayed time to carotid occlusion. Mechanisms include reduced activation of the coagulation cascade [reduced tissue factor (TF) expression and activity] and increased fibrinolysis [higher thrombus embolization episodes and D-dimer levels, reduced vascular plasminogen activator inhibitor (PAI)-1 expression]. In vitro, JCAD silencing inhibited TF and PAI-1 expression in HAECs. JCAD-silenced HAECs (siJCAD) displayed increased levels of LATS2 kinase. Yet, double JCAD and LATS2 silencing did not restore the control phenotype. si-JCAD HAECs showed increased levels of phosphoinositide 3-kinases (PI3K)/ proteinkinase B (Akt) activation, known to downregulate procoagulant expression. The PI3K/Akt pathway inhibitor-wortmannin-prevented the effect of JCAD silencing on TF and PAI-1, indicating a causative role. Also, co-immunoprecipitation unveiled a direct interaction between JCAD and Akt. Confirming in vitro findings, PI3K/Akt and P-yes-associated protein levels were higher in Jcad-/- animals. Lastly, as compared with chronic coronary syndrome, STEMI patients showed higher plasma JCAD, which notably correlated positively with both TF and PAI-1 levels. CONCLUSIONS: JCAD promotes arterial thrombosis by modulating coagulation and fibrinolysis. Herein, reported translational data suggest JCAD as a potential therapeutic target for atherothrombosis.


Assuntos
Infarto do Miocárdio com Supradesnível do Segmento ST , Trombose , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Trombose/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3788-3797, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850836

RESUMO

The present study established specific chromatograms and a method for determining multiple primary components in Yinqiao Powder decoctions and compared the change rules of chemical composition in powder and piece decocting processes of Yinqiao Powder to provide a scientific basis for the modern research of preparations of Yinqiao Powder. Powder and piece decoctions of Yinqiao Powder were prepared. The specific chromatograms were determined and the content of 17 primary components was measured by high-performance liquid chromatography(HPLC), including adoxosidic acid, neochlorogenic acid, forsythoside E, loganic acid, chlorogenic acid, cryptochlorogenic acid, sweroside, forsythoside Ⅰ, forsythoside H, forsythoside A, isochlorogenic acid B, E-aldosecologanin, hesperidin, phillyrin, arctiin, liquiritigenin, and dipotassium glycyrrhizinate. The effect of decocting time on the chemical composition in powder and piece decoctions of Yinqiao Powder was investigated. As a result, the specific chromatogram similarities of powder decoctions of Yinqiao Powder with different decocting time were high, which indicated that their chemical compositions were similar, while the similarities of piece decoctions were low, suggesting similar chemical compositions with big differences. In powder decoctions, the concentrations of neochlorogenic acid, cryptochlorogenic acid, forsytherin H, and isochlorogenic acid B increased with the prolongation of decocting time, and those of adoxosidic acid, forsythoside E, forsythoside Ⅰ, E-aldosecologanin, phillyrin, dipotassium glycyrrhizinate, loganic acid, arctiin, sweroside, and liquiritigenin increased firstly and tended to be stable, while those of forsythoside A, chlorogenic acid, and hesperidin increased firstly and then decreased. In piece decoctions, the concentration of chlorogenic acid increased firstly and then decreased with the prolongation of decocting time, while those of the remaining 16 components showed an upward trend. The concentrations of adoxosidic acid, forsythoside E, forsythoside Ⅰ, E-aldosecologanin, phillyrin, dipotassium glycyrrhizinate, forsythoside A, forsythoside H, and chlorogenic acid in powder decoctions were higher than those in piece decoctions. The concentrations of hesperidin, loganic acid, phillyrin, sweroside, liquiritigenin, neochlorogenic acid, and cryptochlorogenic acid in powder decoctions were higher than those in piece decoctions within 40 min of decocting. The concentration of isochlorogenic acid B in powder decoctions was lower than that in piece decoction 10 min after decocting. The results showed that the decocting time and particle size of raw medicinal materials had certain effects on the content of chemical components in decoctions of Yinqiao Powder. Compared with the piece decocting, the powder decocting could achieve faster resolution of chemical components and higher concentrations, which confirmed the scientific evidence of the traditional powder decocting method of Yinqiao Powder. For the piece decocting of prescriptions of Yinqiao Powder, extraction time should be prolonged and extraction times should be increased to achieve the same effect as the powder decocting.


Assuntos
Medicamentos de Ervas Chinesas , Hesperidina , Neoplasias Primárias Múltiplas , Ácido Clorogênico/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Ácido Glicirrízico/análise , Humanos , Pós
4.
Gastroenterol Rep (Oxf) ; 10: goac028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720196

RESUMO

Delayed recovery from ulcerative colitis is mainly due to impaired healing of the intestinal epithelium after inflammation. The circadian rhythm controls cell proliferation and energy metabolism. However, the role of circadian genes in inflammatory bowel disease is largely unknown. The purpose of this study was to investigate whether disrupting the circadian rhythm in mice can worsen colitis by altering mitochondrial energy metabolism. Mice in the experimental groups were under physiologic stress with an 8-h light shift jet-lag schedule every 3 days, whereas those in the control group were not. Subsequently, half of the mice in the control and jet-lagged groups were given dextran sodium sulfate (DSS) to induce colitis. Mice in each group were euthanized at zeitgeber time (ZT)0, ZT4, ZT8, ZT12, ZT16, and ZT20. To investigate the effects of jet lag on the mice, colon specimens were subjected to hematoxylin and eosin staining to analyse mRNA and protein expression of core circadian clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2, and Nr1d1). We analysed the mitochondrial morphology, adenosine triphosphate (ATP) levels, and the expression of dynamin-related protein 1 (Drp1) and ser637-phosphorylated (p)-Drp1, which are closely related to ATP production. We further investigated the effect of PER2 knock-down in the colon epithelial cells (CCD 841 CoN) by measuring ATP and cell proliferation levels. Disrupting the circadian rhythm changed the oscillation of clock genes in the colon of mice, altered the mitochondrial morphology of the colon specimens, decreased the expression of p-Drp1, reduced ATP production, and exacerbated inflammatory responses in mice with DSS-induced colitis. Additionally, silencing of PER2 in the colon epithelial cells reduced ATP production and cell proliferation. Disrupting the circadian rhythm in mice decreases mitochondrial energy metabolism in the colon and exacerbates symptoms of colitis.

5.
Shanghai Kou Qiang Yi Xue ; 31(1): 12-16, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35587661

RESUMO

PURPOSE: To investigate the mechanism of microRNA-100-5p (miR-100-5p) on mammalian target (mTOR) of rapamycin in temporomandibular arthritis. METHODS: Sixty SD rats were randomly divided into group A, group B, group C, group D, and group E, with 12 rats in each group. Rat models of temporomandibular arthritis were prepared by injecting sodium iodoacetate solution into the bilateral spaces of temporomandibular joint. After establishment, group C was injected pcDNA3.1-miR-100-5p recombinant plasmid, group D was injected mTOR inhibitor rapamycin, group E was injected with pcDNA3.1-miR-100-5p recombinant plasmid and rapamycin, and group A was injected same amount of normal saline in the same way. Various indexes were observed in each group, including morphological changes of temporomandibular joint tissues, matrix metalloproteinase-3 (MMP-3), MMP-1, MMP-13, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), miR-100-5p, mTOR expression. The data were processed using SPSS 22.0 software package. RESULTS: In group B, the structure of temporomandibular joint was fuzzy, with synovial hyperplasia, vascular dilatation, clustered cells and a large amount of inflammatory infiltration. Histopathological changes of temporomandibular joint in each interventional group were improved to different degrees compared with group B, among which group E showed the most obvious improvement. The levels of MMP-3, MMP-1, MMP-13, IL-6, IL-1ß and TNF-α in group B were significantly higher than those in group A(P<0.05). The levels of MMP-3, MMP-1, MMP-13, IL-6, IL-1ß and TNF-α in group C, group D and group E were significantly lower than those in group B(P<0.05). The levels of MMP-3, MMP-1, MMP-13, IL-6, IL-1ß and TNF-α in group D were not significantly different from those in group C (P<0.05). The levels of MMP-3, MMP-1, MMP-13, IL-6, IL-1ß and TNF-α in group E were significantly lower than those in group D (P<0.05). The expression level of miR-100-5p in group E was significantly higher than that in group B (P<0.05). The expression level of mTOR protein in group E was significantly lower than that in group B (P<0.05). CONCLUSIONS: MicroRNA-100-5p may alleviate temporomandibular arthritis by down-regulating the expression of mTOR.


Assuntos
Artrite , MicroRNAs , Transtornos da Articulação Temporomandibular , Animais , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6 , Mamíferos/metabolismo , Metaloproteinase 1 da Matriz , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Sirolimo , Serina-Treonina Quinases TOR/genética , Transtornos da Articulação Temporomandibular/induzido quimicamente , Transtornos da Articulação Temporomandibular/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Korean J Physiol Pharmacol ; 26(3): 145-155, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477542

RESUMO

Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the anti-tumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.

7.
World J Gastrointest Oncol ; 14(1): 319-333, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35116119

RESUMO

BACKGROUND: Cancer-related fatigue (CRF) is the most common concomitant symptom in the treatment of colorectal cancer (CRC). Such patients often present with subjective fatigue state accompanied by cognitive dysfunction, which seriously affects the quality of life of patients. AIM: To explore the effects of cognitive behavior therapy (CBT) combined with Baduanjin exercise on CRF, cognitive impairment, and quality of life in patients with CRC after chemotherapy, and to provide a theoretical basis and practical reference for rehabilitation of CRC after chemotherapy. METHODS: Fifty-five patients with CRC after radical resection and chemotherapy were randomly divided into either an experimental or a control group. The experimental group received the intervention of CBT combined with exercise intervention for 6 mo, and indicators were observed and measured at baseline, 3 mo, and 6 mo to evaluate the intervention effect. RESULTS: Compared with the baseline values, in the experimental group 3 mo after intervention, cognitive function, quality of life score, and P300 amplitude and latency changes were significantly better (P < 0.01). Compared with the control group, at 3 mo, the experimental group had significant differences in CRF, P300 amplitude, and quality of life score (P < 0.05), as well as significant differences in P300 latency and cognitive function (P < 0.01). Compared with the control group, at 6 mo, CRF, P300 amplitude, P300 latency, cognitive function and quality of life score were further improved in the experimental group, with significant differences (P < 0.01). The total score of CRF and the scores of each dimension were negatively correlated with quality of life (P < 0.05), while the total score of cognitive impairment and the scores of each dimension were positively correlated with quality of life (P < 0.05). CONCLUSION: CBT combined with body-building Baduanjin exercise can improve CRF and cognitive impairment in CRC patients after chemotherapy, and improve their quality of life.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34239586

RESUMO

Acorus tatarinowii is a traditional aromatic resuscitation drug that can be clinically used to prevent cardiovascular diseases. The volatile oil of Acorus tatarinowii (VOA) possesses important medicinal properties, including protection against acute myocardial ischemia (MI) injury. However, the pharmacodynamic material basis and molecular mechanisms underlying this protective effect remain unclear. Using network pharmacology and animal experiments, we studied the mechanisms and pathways implicated in the activity of VOA against acute MI injury. First, VOA was extracted from three batches of Acorus tatarinowii using steam distillation, and then, its chemical composition was determined by GC-MS. Next, the components-targets and protein-protein interaction networks were constructed using systematic network pharmacology. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also conducted in order to predict the possible pharmacodynamic mechanisms. Furthermore, animal experiments including ELISAs, histological examinations, and Western blots were performed in order to validate the pharmacological effects of VOA. In total, 33 chemical components were identified in VOA, and ß-asarone was found to be the most abundant component. Based on network pharmacology analysis, the therapeutic effects of VOA against myocardial ischemia might be mediated by signaling pathways involving COX-2, PPAR-α, VEGF, and cAMP. Overall, the obtained results indicate that VOA alleviates the pathological manifestations of isoproterenol-hydrochloride-induced myocardial ischemia in rats, including the decreased SOD (superoxide dismutase) content and increased LDH (lactic dehydrogenase) content. Moreover, the anti-MI effect of VOA might be attributed to the downregulation of the COX-2 protein that inhibits apoptosis, the upregulation of the PPAR-α protein that regulates energy metabolism, and the activation of VEGF and cAMP signaling pathways.

10.
Sci Rep ; 10(1): 20493, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235311

RESUMO

Angiogenesis is a physiological process for the formation of new blood vessels from the pre-existing vessels and it has a vital role in the survival and growth of neoplasms. During tumor angiogenesis, the activation of the gene transcriptions in vascular endothelial cells (ECs) plays an essential role in the promotion of EC proliferation, migration, and vascular network development. However, the molecular mechanisms underlying transcriptional regulation of EC and tumor angiogenesis remains to be fully elucidated. Here we report that the transcription factor Yin Yang 1 (YY1) in ECs is critically involved in tumor angiogenesis. First, we utilized a tamoxifen-inducible EC-specific YY1 deficient mouse model and showed that YY1 deletion in ECs inhibited the tumor growth and tumor angiogenesis. Using the in vivo matrigel plug assay, we then found that EC-specific YY1 ablation inhibited growth factor-induced angiogenesis. Furthermore, vascular endothelial growth factor (VEGF)-induced EC migration was diminished in YY1-depleted human umbilical vein endothelial cells (HUVECs). Finally, a rescue experiment revealed that YY1-regulated BMP6 expression in ECs was involved in EC migration. Collectively, our results demonstrate that endothelial YY1 has a crucial role in tumor angiogenesis and suggest that targeting endothelial YY1 could be a potential therapeutic strategy for cancer treatment.


Assuntos
Células Endoteliais/metabolismo , Melanoma/irrigação sanguínea , Melanoma/patologia , Neovascularização Patológica/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Combinação de Medicamentos , Células Endoteliais/patologia , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Laminina/metabolismo , Melanoma/genética , Camundongos Knockout , Neovascularização Patológica/patologia , Proteoglicanas/metabolismo , RNA Interferente Pequeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Transcrição YY1/genética
11.
Neurogastroenterol Motil ; 32(12): e13941, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32743845

RESUMO

BACKGROUND: Chronic stress is associated with activation of the HPA axis, elevation in pro-inflammatory cytokines, decrease in intestinal epithelial cell tight junction (TJ) proteins, and enhanced visceral pain. It is unknown whether epigenetic regulatory pathways play a role in chronic stress-induced intestinal barrier dysfunction and visceral hyperalgesia. METHODS: Young adult male rats were subjected to water avoidance stress ± H3K9 methylation inhibitors or siRNAs. Visceral pain response was assessed. Differentiated Caco-2/BBE cells and human colonoids were treated with cortisol or IL-6 ± antagonists. Expression of TJ, IL-6, and H3K9 methylation status at gene promoters was measured. Transepithelial electrical resistance and FITC-dextran permeability were evaluated. KEY RESULTS: Chronic stress induced IL-6 up-regulation prior to a decrease in TJ proteins in the rat colon. The IL-6 level inversely correlated with occludin expression. Treatment with IL-6 decreased occludin and induced visceral hyperalgesia. Chronic stress and IL-6 increased H3K9 methylation and decreased transcriptional GR binding to the occludin gene promoter, leading to down-regulation of protein expression and increase in paracellular permeability. Intrarectal administration of a H3K9 methylation antagonist prevented chronic stress-induced visceral hyperalgesia in the rat. In a human colonoid model, cortisol decreased occludin expression, which was prevented by the GR antagonist RU486, and IL-6 increased H3K9 methylation and decreased TJ protein levels, which were prevented by inhibitors of H3K9 methylation. CONCLUSIONS & INFERENCES: Our findings support a novel role for methylation of the repressive histone H3K9 to regulate chronic stress, pro-inflammatory cytokine-mediated reduction in colon TJ protein levels, and increase in paracellular permeability and visceral hyperalgesia.


Assuntos
Colo/metabolismo , Histonas/metabolismo , Interleucina-6/biossíntese , Permeabilidade , Estresse Psicológico/metabolismo , Dor Visceral/metabolismo , Animais , Células CACO-2 , Doença Crônica , Epitélio/metabolismo , Histonas/antagonistas & inibidores , Humanos , Masculino , Metilação , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Dor Visceral/etiologia , Dor Visceral/psicologia
12.
Proc Natl Acad Sci U S A ; 117(9): 4792-4801, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32075915

RESUMO

Angiogenesis, the formation of new blood vessels, is tightly regulated by gene transcriptional programs. Yin Ying 1 (YY1) is a ubiquitously distributed transcription factor with diverse and complex biological functions; however, little is known about the cell-type-specific role of YY1 in vascular development and angiogenesis. Here we report that endothelial cell (EC)-specific YY1 deletion in mice led to embryonic lethality as a result of abnormal angiogenesis and vascular defects. Tamoxifen-inducible EC-specific YY1 knockout (YY1iΔEC ) mice exhibited a scarcity of retinal sprouting angiogenesis with fewer endothelial tip cells. YY1iΔEC mice also displayed severe impairment of retinal vessel maturation. In an ex vivo mouse aortic ring assay and a human EC culture system, YY1 depletion impaired endothelial sprouting and migration. Mechanistically, YY1 functions as a repressor protein of Notch signaling that controls EC tip-stalk fate determination. YY1 deficiency enhanced Notch-dependent gene expression and reduced tip cell formation. Specifically, YY1 bound to the N-terminal domain of RBPJ (recombination signal binding protein for Ig Kappa J region) and competed with the Notch coactivator MAML1 (mastermind-like protein 1) for binding to RBPJ, thereby impairing the NICD (intracellular domain of the Notch protein)/MAML1/RBPJ complex formation. Our study reveals an essential role of endothelial YY1 in controlling sprouting angiogenesis through directly interacting with RBPJ and forming a YY1-RBPJ nuclear repression complex.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Morfogênese/fisiologia , Neovascularização Patológica/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Proteínas de Transporte/metabolismo , Diferenciação Celular , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteínas Nucleares , Ligação Proteica , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo , Transdução de Sinais , Fatores de Transcrição , Fator de Transcrição YY1/genética
13.
Hepatology ; 72(5): 1717-1734, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048304

RESUMO

BACKGROUND AND AIMS: Liver fibrosis (LF) is a central pathological process that occurs in most types of chronic liver diseases. Advanced LF causes cirrhosis, hepatocellular carcinoma, and liver failure. However, the exact molecular mechanisms underlying the initiation and progression of LF remain largely unknown. APPROACH AND RESULTS: This study was designed to investigate the role of protein kinase D3 (PKD3; gene name Prkd3) in the regulation of liver homeostasis. We generated global Prkd3 knockout (Prkd3-/- ) mice and myeloid-cell-specific Prkd3 knockout (Prkd3∆LysM ) mice, and we found that both Prkd3-/- mice and Prkd3∆LysM mice displayed spontaneous LF. PKD3 deficiency also aggravated CCl4 -induced LF. PKD3 is highly expressed in hepatic macrophages (HMs), and PKD3 deficiency skewed macrophage polarization toward a profibrotic phenotype. Activated profibrotic macrophages produced transforming growth factor beta that, in turn, activates hepatic stellate cells to become matrix-producing myofibroblasts. Moreover, PKD3 deficiency decreased the phosphatase activity of SH2-containing protein tyrosine phosphatase-1 (a bona-fide PKD3 substrate), resulting in sustained signal transducer and activator of transcription 6 activation in macrophages. In addition, we observed that PKD3 expression in HMs was down-regulated in cirrhotic human liver tissues. CONCLUSIONS: PKD3 deletion in mice drives LF through the profibrotic macrophage activation.


Assuntos
Cirrose Hepática Experimental/patologia , Cirrose Hepática/patologia , Proteína Quinase C/deficiência , Animais , Tetracloreto de Carbono/toxicidade , Células Cultivadas , Progressão da Doença , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/citologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/diagnóstico , Cirrose Hepática Experimental/genética , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Miofibroblastos/metabolismo , Cultura Primária de Células , Proteína Quinase C/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Índice de Gravidade de Doença , Análise Serial de Tecidos , Fator de Crescimento Transformador beta/metabolismo
14.
Sci Rep ; 9(1): 1458, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728372

RESUMO

Endothelial dysfunction is the common molecular basis of multiple human diseases, such as atherosclerosis, diabetes, hypertension, and acute lung injury. Therefore, primary isolation of high-purity endothelial cells (ECs) is crucial to study the mechanisms of endothelial function and disease pathogenesis. Mouse lung ECs (MLECs) are widely used in vascular biology and lung cell biology studies such as pulmonary inflammation, angiogenesis, vessel permeability, leukocyte/EC interaction, nitric oxide production, and mechanotransduction. Thus, in this paper, we describe a simple, and reproducible protocol for the isolation and culture of MLECs from adult mice using collagenase I-based enzymatic digestion, followed by sequential sorting with PECAM1 (also known as CD31)- and ICAM2 (also known as CD102)-coated microbeads. The morphology of isolated MLECs were observed with phase contrast microscope. MLECs were authenticated by CD31 immunoblotting, and immunofluorescent staining of established EC markers VE-cadherin and von Willebrand factor (vWF). Cultured MLECs also showed functional characteristics of ECs, evidenced by DiI-oxLDL uptake assay and THP-1 monocyte adhesion assay. Finally, we used MLECs from endothelium-specific enhancer of zeste homolog 2 (EZH2) knockout mice to show the general applicability of our protocol. To conclude, we describe here a simple and reproducible protocol to isolate highly pure and functional ECs from adult mouse lungs. Isolation of ECs from genetically engineered mice is important for downstream phenotypic, genetic, or proteomic studies.


Assuntos
Separação Celular/métodos , Células Endoteliais/citologia , Pulmão/citologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Colagenases/metabolismo , Células Endoteliais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Técnicas de Inativação de Genes , Pulmão/metabolismo , Camundongos , Microscopia de Contraste de Fase , Fator de von Willebrand/metabolismo
15.
Pharmacol Ther ; 196: 15-43, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30439455

RESUMO

Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.


Assuntos
Aterosclerose/genética , Epigênese Genética , RNA não Traduzido , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Humanos , Imunidade , Fatores de Risco
16.
Sci Rep ; 8(1): 13658, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209281

RESUMO

Quantitative analysis of morphological changes in a cell nucleus is important for the understanding of nuclear architecture and its relationship with pathological conditions such as cancer. However, dimensionality of imaging data, together with a great variability of nuclear shapes, presents challenges for 3D morphological analysis. Thus, there is a compelling need for robust 3D nuclear morphometric techniques to carry out population-wide analysis. We propose a new approach that combines modeling, analysis, and interpretation of morphometric characteristics of cell nuclei and nucleoli in 3D. We used robust surface reconstruction that allows accurate approximation of 3D object boundary. Then, we computed geometric morphological measures characterizing the form of cell nuclei and nucleoli. Using these features, we compared over 450 nuclei with about 1,000 nucleoli of epithelial and mesenchymal prostate cancer cells, as well as 1,000 nuclei with over 2,000 nucleoli from serum-starved and proliferating fibroblast cells. Classification of sets of 9 and 15 cells achieved accuracy of 95.4% and 98%, respectively, for prostate cancer cells, and 95% and 98% for fibroblast cells. To our knowledge, this is the first attempt to combine these methods for 3D nuclear shape modeling and morphometry into a highly parallel pipeline workflow for morphometric analysis of thousands of nuclei and nucleoli in 3D.


Assuntos
Nucléolo Celular/fisiologia , Núcleo Celular/fisiologia , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Imageamento Tridimensional/métodos , Neoplasias da Próstata/patologia , Nucléolo Celular/patologia , Núcleo Celular/patologia , Humanos , Masculino , Células Tumorais Cultivadas
17.
J Cell Mol Med ; 22(12): 6380-6385, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30255651

RESUMO

Colon crypts are recognized as a mechanical and biochemical Turing patterning model. Colon epithelial Caco-2 cell monolayer demonstrated 2D Turing patterns via force analysis of apical tight junction live cell imaging which illuminated actomyosin meshwork linking the actomyosin network of individual cells. Actomyosin forces act in a mechanobiological manner that alters cell/nucleus/tissue morphology. We observed the rotational motion of the nucleus in Caco-2 cells that appears to be driven by actomyosin during the formation of a differentiated confluent epithelium. Single- to multi-cell ring/torus-shaped genomes were observed prior to complex fractal Turing patterns extending from a rotating torus centre in a spiral pattern consistent with a gene morphogen motif. These features may contribute to the well-described differentiation from stem cells at the crypt base to the luminal colon epithelium along the crypt axis. This observation may be useful to study the role of mechanogenomic processes and the underlying molecular mechanisms as determinants of cellular and tissue architecture in space and time, which is the focal point of the 4D nucleome initiative. Mathematical and bioengineer modelling of gene circuits and cell shapes may provide a powerful algorithm that will contribute to future precision medicine relevant to a number of common medical disorders.


Assuntos
Diferenciação Celular/genética , Colo/metabolismo , Células Epiteliais/metabolismo , Células-Tronco/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Células CACO-2 , Colo/citologia , Células Epiteliais/citologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Células-Tronco/citologia , Junções Íntimas/metabolismo
18.
Theranostics ; 8(11): 3007-3021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896299

RESUMO

Rationale: Atherosclerosis is a chronic inflammatory and epigenetic disease that is influenced by different patterns of blood flow. However, the epigenetic mechanism whereby atheroprotective flow controls endothelial gene programming remains elusive. Here, we investigated the possibility that flow alters endothelial gene expression through epigenetic mechanisms. Methods: En face staining and western blot were used to detect protein expression. Real-time PCR was used to determine relative gene expression. RNA-sequencing of human umbilical vein endothelial cells treated with siRNA of enhancer of zeste homolog 2 (EZH2) or laminar flow was used for transcriptional profiling. Results: We found that trimethylation of histone 3 lysine 27 (H3K27me3), a repressive epigenetic mark that orchestrates gene repression, was reduced in laminar flow areas of mouse aorta and flow-treated human endothelial cells. The decrease of H3K27me3 paralleled a reduction in the epigenetic "writer"-EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2). Moreover, laminar flow decreased expression of EZH2 via mechanosensitive miR101. Genome-wide transcriptome profiling studies in endothelial cells treated with EZH2 siRNA and flow revealed the upregulation of novel mechanosensitive gene IGFBP5 (insulin-like growth factor-binding protein 5), which is epigenetically silenced by H3K27me3. Functionally, inhibition of H3K27me3 by EZH2 siRNA or GSK126 (a specific EZH2 inhibitor) reduced H3K27me3 levels and monocyte adhesion to endothelial cells. Adenoviral overexpression of IGFBP5 also recapitulated the anti-inflammatory effects of H3K27me3 inhibition. More importantly, we observed EZH2 upregulation, and IGFBP5 downregulation, in advanced atherosclerotic plaques from human patients. Conclusion: Taken together, our findings reveal that atheroprotective flow reduces H3K27me3 as a chromatin-based mechanism to augment the expression of genes that confer an anti-inflammatory response in the endothelium. Our study exemplifies flow-dependent epigenetic regulation of endothelial gene expression, and also suggests that targeting the EZH2/H3K27me3/IGFBP5 pathway may offer novel therapeutics for inflammatory disorders such as atherosclerosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Histonas/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Animais , Aterosclerose/imunologia , Aterosclerose/terapia , Endotélio/imunologia , Terapia Genética , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Metilação , Camundongos , Complexo Repressor Polycomb 2/genética , RNA Interferente Pequeno/genética
19.
Biochem Biophys Res Commun ; 498(3): 633-639, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524414

RESUMO

Sirtuin 1 (SIRT1) is an NAD+-dependent protein deacetylase that plays a critical role in controlling energy metabolism, stress response and aging. Hence, enhancing SIRT1 activity could be a potential therapeutic strategy to treat metabolic diseases such as diabetes. However, pharmacological activators for SIRT1 are scarce to date. In this study, using the optimized high throughput screening, we identified E6155, a piperazine 1, 4- diamide compound, as a new small molecular activator of SIRT1. We further found that E6155 significantly upregulated glucose uptake in cultured normal liver cells and skeletal muscle cells through increasing SIRT1 deacetylase activity. In type 2 diabetic KKAy mice, E6155 treatment markedly decreased the level of fasting glucose. Moreover, E6155 improved oral glucose tolerance and insulin tolerance. Euglycemic clamp and the homeostasis model assessment of insulin resistance index showed that E6155 ameliorated the insulin resistance and increased insulin sensitivity in diabetic mice. Mechanistically, we observed that the antidiabetic effects of E6155 were involved in SIRT1 dependent activation of LKB1/AMPK and IRS1/AKT pathways. In conclusion, our findings identified E6155 as a novel SIRT1 activator and suggested that E6155 could be a promising drug candidate for treating insulin resistance and diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Piperazinas/uso terapêutico , Sirtuína 1/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Células Hep G2 , Humanos , Hipoglicemiantes/química , Insulina/metabolismo , Camundongos , Piperazinas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico
20.
J Am Heart Assoc ; 6(12)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29191808

RESUMO

BACKGROUND: Kruppel-like factor 2 (KLF2) is an important zinc-finger transcription factor that maintains endothelial homeostasis by its anti-inflammatory, -thrombotic, -oxidative, and -proliferative effects in endothelial cells. In light of the potent vasoprotective effects of KLF2, modulating KLF2 expression or function could give rise to new therapeutic strategies to treat cardiovascular diseases. METHODS AND RESULTS: High-throughput drug screening based on KLF2 promoter luciferase reporter assay was performed to screen KLF2 activators. Real-time PCR and western blot were used to detect gene and protein expression. Identified KLF2 activator was orally administered to ApoE-/- mice to evaluate anti-atherosclerotic efficacy. By screening 2400 compounds in the Spectrum library, we identified suberanilohydroxamic (SAHA) acid, also known as vorinostat as a pharmacological KLF2 activator through myocyte enhancer factor 2. We found that SAHA exhibited anti-inflammatory effects and attenuated monocyte adhesion to endothelial cells inflamed with tumor necrosis factor alpha. We further showed that the inhibitory effect of SAHA on endothelial inflammation and ensuing monocyte adhesion was KLF2 dependent using KLF2-deficient mouse lung endothelial cells or KLF2 small interfering RNA- depleted human endothelial cells. Importantly, we observed that oral administration of SAHA reduced diet-induced atherosclerotic lesion development in ApoE-/- mice without significant effect on serum lipid levels. CONCLUSIONS: These results demonstrate that SAHA has KLF2-dependent anti-inflammatory effects in endothelial cells and provide the proof of concept that KLF2 activation could be a promising therapeutic strategy for treating atherosclerosis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aterosclerose/prevenção & controle , Ácidos Hidroxâmicos/administração & dosagem , Fatores de Transcrição Kruppel-Like/agonistas , Vasculite/prevenção & controle , Administração Oral , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células COS , Adesão Celular/efeitos dos fármacos , Chlorocebus aethiops , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ensaios de Triagem em Larga Escala , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos Knockout para ApoE , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Transfecção , Vasculite/genética , Vasculite/metabolismo , Vasculite/patologia , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA