Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 103: 106803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335835

RESUMO

Zizania latifolia is a highly nutritious vegetable being praised as "Ginseng in Water". Polysaccharides are the main bioactive ingredients in Z. latifolia, but there have been no reports on the yield- and activity-guided ultrasonic-assisted extraction (UAE), sulfation and anti-non-small cell lung cancer (NSCLC) activity. In this study, Z. latifolia polysaccharides (ZLP) were extracted using UAE under an optimized power, followed by sulfation to give three derivatives (SZLP-1 âˆ¼ 3). After characterization, the antioxidant and anti-NSCLC activities were evaluated. The optimal ultrasonic power for ZLP extraction was screened out to be 300 W, under which the yield was 16.9 ± 2.10 %, and the scavenging rate against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical was 63.3 ± 5.71 %, significantly higher than those of other powers and hot-water extraction. A series of characterizations fully confirmed the sulfated modification of ZLP. Sulfation improved the antioxidation of ZLP and was positively proportional to the degree of substitution (DS), of which SZLP-2 with a DS of 15.1 ± 2.50 elicited strong hydroxyl and DPPH radicals-scavenging capacities. Meanwhile, SZLP-2 also exerted promising anti-NSCLC potency via inhibiting A549 cell proliferation, with a median inhibition concentration (IC50) of 0.57 ± 0.01 mg/mL at 72 h, markedly smaller than that of unmodified ZLP (0.78 ± 0.04 mg/mL). In summary, the yield- and activity-guided UAE led to the ZLP with high yield and strong antioxidation. Further sulfation enhanced the bioactivities and produced the promising SZLP-2, which showed great potential in the development of novel antioxidant and anti-NSCLC drug.


Assuntos
Antioxidantes , Compostos de Bifenilo , Neoplasias Pulmonares , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Poaceae , Água/química , Neoplasias Pulmonares/tratamento farmacológico
2.
Ultrason Sonochem ; 101: 106718, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091742

RESUMO

Zingiber mioga is a highly economic crop that is used to produce vegetables, spices and herbal pharmaceuticals. Its edible flower bud contributes most to the economic value, but the big leaves were discarded as agricultural waste, which urgently needs to be exploited. In this work, polysaccharides from waste Z. mioga leaves (PWZMLs) were extracted using ultrasonic-microwave-assisted extraction (UMAE). After purification and characterization, the antioxidation and anticoagulation of PWZMLs were evaluated to appraise the potential in cardiovascular protection. Under the liquid-solid ratio of 26: 1 mL/g, after ultrasonication at 495 W for 10 min, followed by microwaving at 490 W for 5 min, the yield of PWZMLs achieved to 6.22 ± 0.14 %, notably higher (P < 0.01) than other methods, and ultrasound contributed more to the yield than microwave. Various analyses confirmed that PWZMLs were negatively charged polysaccharides with galacturonic acid the dominant uronic acid. PWZMLs exerted excellent antioxidant capacity, especially for scavenging 1, 1-diphenyl-2-picrylhydrazyl radical. PWZMLs also elicited promising anticoagulant property, particularly for prolonging activated partial thromboplastin time and lowering fibrinogen, which were almost equivalent to heparin at the same concentration. PWZMLs contained two polysaccharide fractions (199.53 and 275.42 kDa) that could synergistically contribute to the pronounced antioxidant and anticoagulant activities. The PWZMLs extracted with optimized UMAE have great potential in cardiovascular protection.


Assuntos
Antioxidantes , Ultrassom , Antioxidantes/farmacologia , Anticoagulantes/farmacologia , Micro-Ondas , Polissacarídeos/farmacologia
3.
J Sci Food Agric ; 102(1): 19-40, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34453323

RESUMO

Eleocharis dulcis, an aquatic plant belonging to Cyperaceae family, is indigenous to Asia, and also occurs in tropical Africa and Australia. The edible corm part of E. dulcis is a commonly consumed aquatic vegetable with a planting area of 44.46 × 103 hm2 in China. This work aims to explore the potential of E. dulcis corm for use as a new food source for sufficient nutrients and health benefits by reviewing its nutrients, phytochemicals, functions, processing and food products. Eleocharis dulcis corm contains starches, dietary fibers, non-starch polysaccharides, proteins, amino acids, phenolics, sterols, puchiin, saponins, minerals and vitamins. Among them, phenolics including flavonoids and quinones could be the major bioconstituents that largely contribute to antioxidant, anti-inflammatory, antibacterial, antitumor, hepatoprotective, neuroprotective and hypolipidemic functions. Peel wastes of E. dulcis corm tend to be enriched in phenolics to a much higher extent than the edible pulp. Fresh-cut E. dulcis corm can be consumed as a ready-to-eat food or processed into juice for beverage production, and anti-browning processing is a key to prolonging shelf life. Present food products of E. dulcis corm are centered on various fruit and vegetable beverages, and suffer from single categories and inadequate development. In brief, underutilized E. dulcis corm possesses great potential for use as a new food source for sufficient nutrients and health benefits. © 2021 Society of Chemical Industry.


Assuntos
Eleocharis/química , Compostos Fitoquímicos/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Eleocharis/metabolismo , Manipulação de Alimentos , Humanos , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Caules de Planta/química , Caules de Planta/metabolismo
4.
J Cell Biochem ; 120(5): 8352-8358, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30548299

RESUMO

This study aimed to investigate the role and mechanism of action of targeting protein for Xklp2 (TPX2) in liver cancer, we compared TPX messenger RNA (mRNA) expression in liver cancer tissue samples and adjacent normal liver tissue samples as well as in human liver cancer cell lines and nonmalignant cell line by quantitative reverse transcription polymerase chain reaction (qRT-PCR). TPX2 gene was silenced in HepG2 cells by transfection with the lentiviral vector expressing TPX2-targeting short hairpin RNA (shRNA), and the knockdown efficiency was evaluated by RT-qPCR. Cell proliferation, apoptosis as well as protein level of c-Myc, cyclin D1, caspase-3, phosphorylated glycogen synthase kinase-3ß (p-GSK-3ß), and ß-catenin in HepG2 cells were evaluated before and after the TPX2 knockdown. Wnt/ß-catenin signaling pathway was inhibited by treatment with 20 µM of XAV-939 or activated by treatment with 20 mM of LiCl. We found that TPX2 mRNA level was significantly increased in liver cancer tissue samples and cell lines comparing to noncancerous counterparts (P < 0.05). TPX2 knockdown significantly reduces TPX2 expression (P < 0.01), cell proliferation (P < 0.05), protein level of c-Myc and cyclin D1 (P < 0.01), activation of Wnt/ß-catenin signaling in HepG2 cells (P < 0.01) while increasing cell apoptosis (P < 0.01). Treatment with XAV-939 significantly reduced HepG2 cell proliferation (P < 0.05) while increasing cell apoptosis (P < 0.01). Treatment with LiCl significantly attenuated the antiproliferative and apoptosis-promoting effect of TPX2 knockdown on HepG2 cells (P < 0.05). Lentivirus-mediated silencing of TPX2 gene could inhibit proliferation and induce apoptosis in hepatoma cells by inhibiting Wnt signaling pathway and regulating cyclin and apoptosis-related proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA