Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Infect Dis Poverty ; 12(1): 82, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697423

RESUMO

BACKGROUND: Blastocystis hominis (Bh) is zoonotic parasitic pathogen with a high prevalent globally, causing opportunistic infections and diarrhea disease. Human immunodeficiency virus (HIV) infection disrupts the immune system by depleting CD4+ T lymphocyte (CD4+ T) cell counts, thereby increasing Bh infection risk among persons living with HIV (PLWH). However, the precise association between Bh infection risk and HIV-related biological markers and treatment processes remains poorly understood. Hence, the purpose of the study was to explore the association between Bh infection risk and CD4+ T cell counts, HIV viral load (VL), and duration of interruption in antiviral therapy among PLWH. METHODS: A large-scale multi-center cross-sectional study was conducted in China from June 2020 to December 2022. The genetic presence of Bh in fecal samples was detected by real-time fluorescence quantitative polymerase chain reaction, the CD4+ T cell counts in venous blood was measured using flowcytometry, and the HIV VL in serum was quantified using fluorescence-based instruments. Restricted cubic spline (RCS) was applied to assess the non-linear association between Bh infection risk and CD4+ T cell counts, HIV VL, and duration of interruption in highly active antiretroviral therapy (HARRT). RESULTS: A total of 1245 PLWH were enrolled in the study, the average age of PLWH was 43 years [interquartile range (IQR): 33, 52], with 452 (36.3%) being female, 50.4% (n = 628) had no immunosuppression (CD4+ T cell counts > 500 cells/µl), and 78.1% (n = 972) achieved full virological suppression (HIV VL < 50 copies/ml). Approximately 10.5% (n = 131) of PLWH had interruption. The prevalence of Bh was found to be 4.9% [95% confidence interval (CI): 3.8-6.4%] among PLWH. Significant nonlinear associations were observed between the Bh infection risk and CD4+ T cell counts (Pfor nonlinearity < 0.001, L-shaped), HIV VL (Pfor nonlinearity < 0.001, inverted U-shaped), and duration of interruption in HARRT (Pfor nonlinearity < 0.001, inverted U-shaped). CONCLUSIONS: The study revealed that VL was a better predictor of Bh infection than CD4+ T cell counts. It is crucial to consider the simultaneous surveillance of HIV VL and CD4+ T cell counts in PLWH in the regions with high level of socioeconomic development. The integrated approach can offer more comprehensive and accurate understanding in the aspects of Bh infection and other opportunistic infections, the efficacy of therapeutic drugs, and the assessment of preventive and control strategies.


Assuntos
Infecções por Blastocystis , HIV , Humanos , Feminino , Adulto , Masculino , Infecções por Blastocystis/complicações , Infecções por Blastocystis/epidemiologia , Estudos Transversais , China/epidemiologia , Terapia Antirretroviral de Alta Atividade
2.
Mol Immunol ; 156: 85-97, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36913767

RESUMO

The pathogenic hyper-inflammatory response has been regarded as the major cause of the severity and death related to acute lung injury (ALI). Hua-ban decoction (HBD) is a classical prescription in traditional Chinese medicine (TCM). It has been extensively used to treat inflammatory diseases; however, its bioactive components and therapeutic mechanisms remain unclear. Here, we established a lipopolysaccharide (LPS)-induced ALI model that presents a hyperinflammatory process to explore the pharmaco-dynamic effect and underlying molecular mechanism of HBD on ALI. In vivo, we confirmed that in LPS-induced ALI mice, HBD improved pulmonary injury by via down-regulating the expression of proinflammatory cytokines, including IL-6, TNF-α, and macrophage infiltration, as well as macrophage M1 polarization. Moreover, in vitro experiments in LPS-stimulated macrophages demonstrated that the potential bioactive compounds of HBD inhibited the secretion of IL-6 and TNF-α. Mechanically, the data revealed that HBD treatment of LPS-induced ALI acted via NF-κB pathway, which regulated macrophage M1 polarization. Additionally, two major HBD compounds, i.e., quercetin and kaempferol, showed a high binding affinity with p65 and IkBα. In conclusion, the data obtained in this study demonstrated the therapeutic effects of HBD, which indicates the possibility for the development of HBD as a potential treatment for ALI.


Assuntos
Lesão Pulmonar Aguda , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Lipopolissacarídeos/efeitos adversos , Farmacologia em Rede , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , NF-kappa B/metabolismo , Pulmão/metabolismo
3.
Biomed Pharmacother ; 160: 114319, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724639

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become one of the main chronic liver diseases worldwide. Protopanaxadiol (PPD), an active compound derived from Gynostemma pentaphyllum, has been found able to improve free fatty acid-induced lipid accumulation in hepatocytes. However, the efficacy of PPD on NAFLD and the underlying mechanism remains unknown. In this study, the mice were fed with a high-fat diet for 22 weeks to induce the NAFLD model, and then were treated with PPD by gavage for 8 weeks. Moreover, AML12 and HepG2 cells induced by free fatty acids for 24 h, were treated with different doses of PPD and/or AMPK or SIRT1 inhibitor to explore the pharmacological mechanism of PPD. The results showed that mice with PPD treatment had significantly reduced liver weight and serum aminotransferase levels, less severe hepatosteatosis, and inflammatory cell infiltration in liver tissues when compared with the model mice. PPD also reversed the down-regulated activation of AMPK and SIRT1 expression as well as the change of lipid metabolism-related molecules in the mice liver tissues. Consistently, the in vitro experiments showed the effect of PPD in ameliorating lipid accumulation in hepatocytes. The inhibitor of AMPK or SIRT1 suppressed the AMPK and SIRT1 signaling and markedly diminished the anti-steatosis effect of PPD. In conclusion, our results prove the ameliorating impact of PPD on NAFLD and also reveal the involvement of regulation of AMPK/SIRT1 signaling pathway-mediated lipid metabolism in the underlying mechanism, suggesting PPD as a potential natural compound for the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/metabolismo , Hepatócitos , Fígado , Transdução de Sinais , Ácidos Graxos não Esterificados/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
4.
BMC Complement Med Ther ; 22(1): 213, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945571

RESUMO

BACKGROUND: Salvia-Nelumbinis naturalis (SNN), the extract of Chinese herbal medicine, has shown effects on NAFLD. This study aims to explore the underlying mechanism of SNN for regulating the lipid metabolism disorder in NAFLD based on the SIRT1/AMPK signaling pathway. METHODS: Male C57BL/6J mice fed with a high-fat diet (HFD) were used to establish the NAFLD model. Dynamic changes of mice including body weight, liver weight, serological biochemical indexes, liver histopathological changes, and protein level of AMPK and SIRT1 were monitored. After18 weeks, SNN treatment was administrated to the NAFLD mice for another 4 weeks. Besides the aforementioned indices, TC and TG of liver tissues were also measured. Western blot and quantitative RT-PCR were used to detect the expression and/or activation of SIRT1 and AMPK, as well as the molecules associated with lipid synthesis and ß-oxidation. Furthermore, AML12 cells with lipid accumulation induced by fatty acids were treated with LZG and EX527 (SIRT1 inhibitor) or Compound C (AMPK inhibitor ) to confirm the potential pharmacological mechanism. RESULTS: Dynamic observation found the mice induced by HFD with gradually increased body and liver weight, elevated serum cholesterol, hepatic lipid accumulation, and liver injury. After 16 weeks, these indicators have shown obvious changes. Additionally, the hepatic level of SIRT1 and AMPK activation was identified gradually decreased with NAFLD progress. The mice with SNN administration had lower body weight, liver weight, and serum level of LDL-c and ALT than those of the NAFLD model. Hepatosteatosis and hepatic TG content in the liver tissues of the SNN group were significantly reduced. When compared with control mice, the NAFLD mice had significantly decreased hepatic expression of SIRT1, p-AMPK, p-ACC, ACOX1, and increased total Acetylated-lysine, SUV39H2, and SREBP-1c. The administration of SNN reversed the expression of these molecules. In vitro experiments showed the effect of SNN in ameliorating hepatosteatosis and regulating the expression of lipid metabolism-related genes in AML12 cells, which were diminished by EX527 or Compound C co-incubation. CONCLUSIONS: Taken together, the SIRT1/AMPK signaling pathway, involved in hepatic lipid synthesis and degradation, plays a pivotal role in the pathogenesis of NAFLD development. The regulation of SIRT1/AMPK signaling greatly contributes to the underlying therapeutic mechanism of SNN for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Salvia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal , Ácidos Graxos/farmacologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Salvia/química , Transdução de Sinais , Sirtuína 1/metabolismo
5.
Front Pharmacol ; 13: 900128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847002

RESUMO

The extract of Marsdenia tenacissima (Roxb.) Moon [Apocynaceae] (MTE) has shown a significant anti-cancer effect on hepatocellular carcinoma (HCC), but its mechanism remains unclear. In this study, we used transcriptomics methods to investigate the underlying mechanism of MTE against HCC. Both MHCC97H and HepG2 cell lines were treated with MTE. The cell viability and migration were measured using the cell counting kit-8 assay and transwell assay. RNA-sequencing was used to identify differentially expressed genes (DEGs) between HepG2 cells treated with and without MTE. The expression levels of selected DEGs-vascular endothelial growth factor-A (VEGFA), platelet-derived growth factor receptor-ß (PDGFRB), and von Willebrand factor (VWF)-were verified by RT-PCR and Western blot. The effect of conditioned medium from HCC cells with MTE treatment (CM-MTE) on blood vessels was observed by tube formation assay of HUVECs and chick chorioallantoic membrane (CAM) assay. A mouse model of HCC patient-derived tumor xenograft (PDX) was established and treated with MTE. The effect of MTE on the growth and angiogenesis of HCC-PDX was analyzed. The results demonstrated that MTE inhibited the viability and migration of HCC cells. RNA-seq showed that MTE treatment downregulated multiple genes associated with metabolism and angiogenesis. The expression levels of VEGFA, VWF, PDGFB, and PDGFRB in HCC cells were significantly suppressed by MTE. Meanwhile, MTE effectively inhibited the tube-forming capability of HUVECs and the angiogenesis of chick CAM. In vivo experiments revealed that the extract reduced tumor volume, inhibited the proliferation of HCC cells, and expanded the necrotic area of the tumor. Immunohistochemical results showed that the expression levels of CD31, PDGFB, VEGF, VWF, and PDGFRB in the HCC-PDX tumor tissues were all downregulated by MTE in a dose-dependent manner. Taken together, MTE could inhibit angiogenesis by repressing the expression of VEGF, VWF, PDGF, and PDGFRB in HCC cells, a mechanism that may enable MTE to counter HCC development.

6.
Front Pharmacol ; 13: 863756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592421

RESUMO

The activated c-Jun N-terminal kinase (JNK) specifically combined with SH3 domain-binding protein 5 (Sab) may mediate damage to the mitochondrial respiratory chain. Whether mitochondrial dysfunction induced by the JNK/Sab signaling pathway plays a pivotal role in the lipotoxic injury of nonalcoholic steatohepatitis (NASH) remains a lack of evidence. Scoparone, a natural compound from Traditional Chinese Medicine herbs, has the potential for liver protection and lipid metabolism regulation. However, the effect of scoparone on NASH induced by a high-fat diet (HFD) as well as its underlying mechanism remains to be elucidated. The HepG2 and Huh7 cells with/without Sab-knockdown induced by palmitic acid (PA) were used to determine the role of JNK/Sab signaling in mitochondrial dysfunction and cellular lipotoxic injury. To observe the effect of scoparone on the lipotoxic injured hepatocytes, different dose of scoparone together with PA was mixed into the culture medium of HepG2 and AML12 cells to incubate for 24 h. In addition, male C57BL/6J mice were fed with an HFD for 22 weeks to induce the NASH model and were treated with scoparone for another 8 weeks to investigate its effect on NASH. Molecules related to JNK/Sab signaling, mitochondrial function, and lipotoxic injury were detected in in vitro and/or in vivo experiments. The results showed that PA-induced activation of JNK/Sab signaling was blocked by Sab knockdown in hepatocytes, which improved mitochondrial damage, oxidative stress, hepatosteatosis, cell viability, and apoptosis. Scoparone demonstrated a similar effect on the PA-induced hepatocytes as Sab knockdown. For the NASH mice, treatment with scoparone also downregulated the activation of JNK/Sab signaling, improved histopathological changes of liver tissues including mitochondrial number and morphology, lipid peroxide content, hepatosteatosis and inflammation obviously, as well as decreased the serum level of lipid and transaminases. Taken together, this study confirms that activation of the JNK/Sab signaling pathway-induced mitochondrial dysfunction plays a crucial role in the development of NASH. Scoparone can improve the lipotoxic liver injury partially by suppressing this signaling pathway, making it a potential therapeutic compound for NASH.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35035496

RESUMO

BACKGROUND: There is still a lack of effective therapeutic drugs for nonalcoholic fatty liver disease (NAFLD) to date. In this study, we applied mouse model experiments to clarify the effect of Chinese herbal medicine "Lanzhang Granules (LZG)" on NAFLD and further explore the potential mechanism to provide an alternative method for NAFLD treatment. METHODS: Male C57BL/6J mice were fed with a high-fat diet (HFD) for twenty-two weeks to induce the NAFLD model. LZG intervention was then performed by gavage daily for another eight weeks. At the end of the treatment, serum and liver tissues were collected. Serum biochemical indexes, insulin levels, and liver histopathology were measured to assess the effect of LZG on NAFLD. The liver tissues were then analyzed by RNA sequence for differentially expressed genes and signaling pathways. Results were further analyzed by Protein-Protein Interaction (PPI) networks between the LZG and model groups. The selected different genes and signaling pathways were further verified by RT-PCR and Western blot analysis. Moreover, alpha mouse liver 12 (AML12) cells with lipid accumulation induced by fatty acid were treated with LZG, Fenofibrate (PPARα agonist), or Gw6471 (PPARα antagonist) to confirm the potential pharmacological mechanism. RESULTS: LZG was found to downregulate liver weight, body weight, liver index, and serum levels of ALT, AST, and serum lipid in HFD-induced NAFLD mice. HE and Oil Red O staining showed the improvement of hepatic steatosis and inflammatory infiltration in the mice with LZG treatment. The homeostasis model assessment-insulin resistance (HOMA-IR) index indicated that LZG improved the insulin resistance of NAFLD mice. The RNA sequencing and PPI analysis confirmed the role of LZG in lipid metabolism regulation and identified the peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway as one of the major underlying mechanisms. Western blot and RT-PCR results verified the regulatory effect of LZG on the PPARα pathway, including the upregulation of PPARα, acyl-coenzyme A oxidase 1 (ACOX1), and enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (EHHADH) and the downregulation of TNFα. In vitro experiments showed the effect of LZG in improving lipid accumulation and cell viability in AML12 cells induced by fatty acids, which were alleviated by Gw6471 coincubation. Gw6471could also reverse the transcription of PPAR target genes ACOX1 and EHHADH, which were upregulated by LZG treatment. CONCLUSION: LZG can improve NAFLD in mice or cell models. A major underlying mechanism may be the regulation of the PPARα signaling pathway to improve lipid metabolism and inhibit the inflammatory response. This study will help to promote the clinical application of LZG for the treatment of NAFLD.

8.
Pharm Biol ; 59(1): 1359-1368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34915801

RESUMO

CONTEXT: Jiang Zhi Granule (JZG) is known to improve hepatic function, reduce liver fat deposition and inflammation in non-alcoholic fatty liver disease (NAFLD). OBJECTIVE: To determine the protective mechanism of JZG on immunological barrier of intestinal mucosa in rats with diet-induced non-alcoholic steatohepatitis (NASH). MATERIALS AND METHODS: A Sprague-Dawley (SD) model of NASH was established using a high-fat diet and 1% dextran sulphate sodium (DSS) through drinking water. The rats were randomized into four groups and treated for four weeks, respectively, including normal control (NC), model control (MC), positive control (PC) and JZG. Mesenteric lymph nodes (MLNs) cells were isolated and cultured to assess a potential disruption of the enteric immune barrier. Also, investigation of intestinal mucosal dendritic cell-toll-like-receptor-myeloid differentiation primary response 88 (DC-TLR-MyD88) signalling pathway in vitro was examined. RESULTS: The lethal concentration 50 (LD50) of JZG was greater than 5 g/kg, while its inhibitory concentration 50 (IC50) was 1359 µg/mL in HepG2. In JZG group, the plasma levels of alanine transaminase (ALT), aspartate transaminase (AST), malondialdehyde (MDA), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG) and serum endotoxin were significantly (p < 0.01) reduced. In contrast, plasma concentrations of high-density lipoprotein cholesterol (HDL-C) and superoxide dismutase (SOD) were increased. Furthermore, proinflammatory factor, interferon-γ (IFN-γ)+ from CD4+ T cells in DSS-induced NASH rats increased significantly (p < 0.01) compared to NC group. Importantly, JZG treatment substantially decreased (p < 0.01) the relative expressions of TLR-44 and MyD88. CONCLUSIONS: JZG treatment may protect immunological barrier of intestinal mucosa in NASH individual.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Sulfato de Dextrana , Dieta Hiperlipídica , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/toxicidade , Feminino , Células Hep G2 , Humanos , Concentração Inibidora 50 , Mucosa Intestinal/imunologia , Dose Letal Mediana , Masculino , Fator 88 de Diferenciação Mieloide/genética , Hepatopatia Gordurosa não Alcoólica/imunologia , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/genética
9.
J Exp Clin Cancer Res ; 40(1): 348, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740372

RESUMO

BACKGROUND: Resistance to oxaliplatin is a major obstacle for the management of locally advanced and metastatic colon cancer (CC). Although long noncoding RNAs (lncRNAs) play key roles in CC, the relationships between lncRNAs and resistance to oxaliplatin have been poorly understood yet. METHODS: Chemo-sensitive and chemo-resistant organoids were established from colon cancer tissues of the oxaliplatin-sensitive or -resistant patients. Analysis of the patient cohort indicated that lnc-RP11-536 K7.3 had a potential oncogenic role in CC. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of lnc-RP11-536 K7.3 on CC proliferation, glycolysis, and angiogenesis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between lnc-RP11-536 K7.3, SOX2 and their downstream target HIF-1α. RESULTS: In this study, we identified a novel lncRNA, lnc-RP11-536 K7.3, was associated with resistance to oxaliplatin and predicted a poor survival. Knockout of lnc-RP11-536 K7.3 inhibited the proliferation, glycolysis, and angiogenesis, whereas enhanced chemosensitivity in chemo-resistant organoids and CC cells both in vitro and in vivo. Furthermore, we found that lnc-RP11-536 K7.3 recruited SOX2 to transcriptionally activate USP7 mRNA expression. The accumulative USP7 resulted in deubiquitylation and stabilization of HIF-1α, thereby facilitating resistance to oxaliplatin. CONCLUSION: In conclusion, our findings indicated that lnc-RP11-536 K7.3 could promote proliferation, glycolysis, angiogenesis, and chemo-resistance in CC by SOX2/USP7/HIF-1α signaling axis. This revealed a new insight into how lncRNA could regulate chemosensitivity and provide a potential therapeutic target for reversing resistance to oxaliplatin in the management of CC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinogênese/genética , Neoplasias Colorretais/tratamento farmacológico , Organoides/efeitos dos fármacos , Oxaliplatina/uso terapêutico , RNA Longo não Codificante/genética , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Masculino , Oxaliplatina/farmacologia , Transdução de Sinais
10.
Chem Res Toxicol ; 34(3): 833-838, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647205

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in the liver and associates with obesity, hyperlipidemia, and insulin resistance. NAFLD could lead to nonalcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis, and even cancers. The development of therapy for NAFLD has been proven difficult. Emerging evidence suggests that liver X receptor (LXR) antagonist is a potential treatment for fatty liver disease. However, concerns about the cholesterol-increasing effects make it questionable for the development of LXR antagonists. Here, the overweight monkeys were fed with LXRß-selective antagonist sophoricoside or LXRα/ß dual-antagonist morin for 3 months. The morphology of punctured liver tissues was examined by H&E staining. The liver, heart, and kidney damage indices were analyzed using plasma. The blood index was assayed using complete blood samples. We show that LXRß-selective antagonist sophoricoside and LXRα/ß dual-antagonist morin alleviated lipid accumulation in the liver in overweight monkeys. The compounds resulted in higher plasma TC or LDL-c contents, increased white blood cell and lymphocyte count, and decreased neutrophile granulocyte count in the monkeys. The compounds did not alter plasma glucose, apolipoprotein A (ApoA), ApoB, ApoE, lipoprotein (a) (LPA), nonesterified fatty acid (NEFA), aspartate transaminases (AST), creatinine (CREA), urea nitrogen (UN), and creatine kinase (CK) levels. Our data suggest that LXRß-selective and LXRα/ß dual antagonism may lead to hypercholesterolemia in nonhuman primates, which calls into question the development of LXR antagonist as a therapy for NAFLD.


Assuntos
Benzopiranos/farmacologia , Colesterol/metabolismo , Flavonoides/farmacologia , Receptores X do Fígado/antagonistas & inibidores , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Benzopiranos/administração & dosagem , Benzopiranos/química , Colesterol/sangue , Feminino , Flavonoides/administração & dosagem , Flavonoides/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Macaca mulatta , Masculino , Estrutura Molecular , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química
11.
Hum Vaccin Immunother ; 17(6): 1578-1585, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33606578

RESUMO

Vaccinia virus was used to prevent smallpox. After the World Health Organization declared smallpox extinct, vaccinia virus has been explored for the development of vaccines against a variety of infectious diseases. It also finds a new place in oncolytic therapy. Here we provide a brief review of the history, current status, and future prospect of vaccinia virus-based vaccine and oncolytic virus. New advancements, including a single vaccine targeting multiple viruses, strategies of arming vaccinia viruses to enhance anti-tumor activity, the promise and challenge of combining vaccinia-based virotherapy with immunotherapy, are discussed as special focus.


Assuntos
Doenças Transmissíveis , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Imunoterapia , Vaccinia virus
12.
Cell Death Dis ; 12(1): 8, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414428

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, accounting for the majority of breast cancer-related death. Due to the lack of specific therapeutic targets, chemotherapeutic agents (e.g., paclitaxel) remain the mainstay of systemic treatment, but enrich a subpopulation of cells with tumor-initiating capacity and stem-like characteristics called cancer stem cells (CSCs); thus development of a new and effective strategy for TNBC treatment is an unmet medical need. Cancer nanomedicine has transformed the landscape of cancer drug development, allowing for a high therapeutic index. In this study, we developed a new therapy by co-encapsulating clinically approved drugs, such as paclitaxel, verteporfin, and combretastatin (CA4) in polymer-lipid hybrid nanoparticles (NPs) made of FDA-approved biomaterials. Verteporfin is a drug used in the treatment of macular degeneration and has recently been found to inhibit the Hippo/YAP (Yes-associated protein) pathway, which is known to promote the progression of breast cancer and the development of CSCs. CA4 is a vascular disrupting agent and has been tested in phase II/III of clinical trials. We found that our new three drug-NP not only effectively inhibited TNBC cell viability and cell migration, but also significantly diminished paclitaxel-induced and/or CA4-induced CSC enrichment in TNBC cells, partially through inhibiting the upregulated Hippo/YAP signaling. Combination of verteporfin and CA4 was also more effective in suppressing angiogenesis in an in vivo zebrafish model than single drug alone. The efficacy and application potential of our triple drug-NPs were further assessed by using clinically relevant patient-derived xenograft (PDX) models. Triple drug-NP effectively inhibited the viability of PDX organotypic slide cultures ex vivo and stopped the growth of PDX tumors in vivo. This study developed an approach capable of simultaneously inhibiting bulk cancer cells, CSCs, and angiogenesis.


Assuntos
Bibenzilas/farmacologia , Nanopartículas/uso terapêutico , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Verteporfina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Feminino , Humanos , Camundongos Nus , Células-Tronco Neoplásicas , Ratos , Peixe-Zebra
13.
Immunotherapy ; 13(2): 177-184, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33225803

RESUMO

Despite the success of antiretroviral therapy in suppressing HIV to an undetectable level in the blood and improving patients' quality of life, HIV persists in antiretroviral therapy-treated patients and threatens their lives. Anti-HIV chimeric antigen receptor (CAR) T cells could offer a cure by recognizing and killing virus-producing cells in an Env-specific manner. In this review, the authors summarize several important aspects of the development of anti-HIV CAR T cells, with a special focus on the evolution of CAR design for enhanced potency and targeting specificity, and also outline the challenges that still need to be addressed to take anti-HIV CAR T cells from a hopeful approach to a real HIV cure.


Assuntos
Desenvolvimento de Medicamentos , Infecções por HIV/imunologia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos CD4/imunologia , Desenvolvimento de Medicamentos/tendências , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/transplante , Linfócitos T/virologia , Latência Viral/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
14.
Eur J Pharmacol ; 888: 173459, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768506

RESUMO

Colorectal cancer (CRC) is one of the most common cancers worldwide. Colorectal carcinogenesis represents a heterogeneous process which influenced by diet, environmental and microbial exposures. Microbes in the gut might take up microRNAs (miRNAs) and these miRNAs might affect microbes in turn. Our previous work identified miR-139-5p as a tumor suppressor gene down-regulated in CRC. At present, the regulatory role and mechanism of miR-139-5p between Fusobacterium nucleatum and CRC are unclear. In this study, after co-incubating Fusobacterium nucleatum with CRC cells, MTT assay, colony formation assay and wound-healing assay showed that Fusobacterium nucleatum could stimulate cell proliferation and migration. After knocking down the expression of c-met in cells, western blot assay proved that knocking down c-met could weaken this stimulation. C-met is one of the target genes of miR-139-5p. Experimented with miR-139-5p overexpressed CRC cell lines, we found the same results as knocking down c-met, which means that endogenous miR-139-5p can reduce the stimulation. Next, by co-incubating the exogenous miR-139-5p mimics with Fusobacterium nucleatum, we proved that exogenous miR-139-5p could inhibit the proliferation of Fusobacterium nucleatum. After treating CRC cells with Fusobacterium nucleatum, which incubated with miR-139-5p mimics in advance, MTT assay indicated that the stimulation of Fusobacterium nucleatum was weakened. Besides, we speculated the binding site between miR-139-5p and Fusobacterium nucleatum. In sum, our study suggests a new prospect for the treatment of CRC, and the combination of Fusobacterium nucleatum and miR-139-5p could be used as a more valuable comprehensive biomarker for CRC prognosis.


Assuntos
Neoplasias Colorretais/metabolismo , Fusobacterium nucleatum/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/administração & dosagem , MicroRNAs/biossíntese , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fusobacterium nucleatum/genética , Células HCT116 , Humanos , MicroRNAs/genética
15.
Front Pharmacol ; 11: 104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153410

RESUMO

A leading cause of death worldwide is sepsis that develops as a dysregulated immune response to infection. Serious infection caused by methicillin-resistant Staphylococcus aureus (MRSA) increases the difficulty of treatment in septic patients. Host-directed therapy (HDT) is an emerging approach to bacterial infections. Xuebijing injection (XBJ), a commercialized injectable prescription from traditional Chinese medicine, has been used as adjuvant therapy for sepsis with a history of 15 years. Whether it plays a protective role in severe infection caused by antibiotic-resistant bacteria is still unknown. In this study, XBJ significantly improved the survival of MRSA-induced sepsis mice. In MRSA-infected mouse model, XBJ down-regulated the expression of inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, MCP-1, MIP-2, and IL-10 in sera. Besides that, it decreased the bacterial load in spleens, livers, and alleviated tissue damage of lung, liver, and kidney. The combination of XBJ with vancomycin or dexamethasone exhibited a better down-regulatory role of the inflammatory response. Then, the protective mechanism of XBJ was further investigated. XBJ inhibited heat-killed MRSA-induced IL-6 and TNF-α production in mouse macrophages. XBJ also decreased Pam3CSK4 (a synthetic tripalmitoylated lipopeptide mimicking bacterial lipoproteins)-stimulated expression of IL-6, TNF-α, IL-1ß, IL-12, etc. in mouse macrophages. Furthermore, XBJ down-regulated the activation of NF-κB, MAPK, and PI3K/Akt pathways in Pam3CSK4-stimulated mouse macrophages. In conclusion, our findings demonstrated that XBJ played a protective role in MRSA-challenged mice and down-regulated the inflammatory response and the activation of signaling pathways initiated by Pam3CSK4. It enlarged the clinical application of XBJ in the treatment of severe bacterial infection, e.g. caused by MRSA.

17.
Biomed Pharmacother ; 121: 109617, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31810139

RESUMO

Bone metastasis of breast cancer causes severe skeletal-related events and poor prognosis. Wensheng Zhuanggu Formula (WSZG), a traditional Chinese prescription, is used to adjunctively treat breast cancer bone metastases in clinical practice. This study was undertaken to investigate the antibone-metastatic activities and mechanisms of WSZG extract by evaluating the effect of this formula on the cross-talk between bone marrow-derived mesenchymal stem cells (BMSCs) and breast cancer cells in triggering epithelial-mesenchymal transition (EMT) in vivo and in vitro. The results demonstrated that BMSCs might enhance the invasive and metastatic potentials of breast cancer cells as a consequence of EMT induction through direct cell-to-cell contact. WSZG treatment remarkably suppressed motility, invasion, EMT-related gene, and protein markers in BMSC-conditioned breast cancer cells and ameliorated bone metastases and damages in nude mice following co-injection of BMSCs and MDA-MB-231BO breast cancer cells. Further investigation showed that the transforming growth factor-ß1 (TGF-ß1)/Smads pathway was an important mechanism enabling BMSCs to induce EMT occurrence of breast cancer cells. WSZG treatment reversed BMSC-induced EMT by downregulating TGF-ß1/Smads signaling. Thus, WSZG extracts may be regarded as a potential antibone-metastatic agent for breast cancer therapy.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transição Epitelial-Mesenquimal , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Extratos Vegetais/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Cell Biol Toxicol ; 35(3): 233-245, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31140025

RESUMO

Metastasis is the leading cause of tumor-related death from lung cancer. However, limited success has been achieved in the treatment of lung cancer metastasis due to the lack of understanding of the mechanisms that underlie the metastatic process. In this study, Lewis lung carcinoma (LLC) cells which expressed green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm were used to record metastatic process in real-time via a whole-mouse imaging system. Using this system, we show the neddylation inhibitor MLN4924 inhibits multiple steps of the metastatic process, including intravascular survival, extravasation, and formation of metastatic colonies, thus finally suppressing tumor metastasis. Mechanistically, MLN4924 efficiently inhibits the expression of MMP2, MMP9, and vimentin and disrupts the actin cytoskeleton at an early stage to impair invasive potential and subsequently causes a DNA damage response, cell cycle arrest, and apoptosis upon long exposure to MLN4924. Furthermore, MMP2 and MMP9 are overexpressed in patient lung adenocarcinoma, which conferred a worse overall survival. Together, targeting the neddylation pathway via MLN4924 suppresses multiple steps of the metastatic process, highlighting the potential therapeutic value of MLN4924 for the treatment of metastatic lung cancer.


Assuntos
Neoplasias Pulmonares/metabolismo , Proteína NEDD8/metabolismo , Metástase Neoplásica/prevenção & controle , Animais , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Ciclopentanos/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/fisiopatologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína NEDD8/fisiologia , Invasividade Neoplásica/fisiopatologia , Metástase Neoplásica/fisiopatologia , Processamento de Proteína Pós-Traducional/fisiologia , Pirimidinas/farmacologia , Transdução de Sinais , Enzimas Ativadoras de Ubiquitina/metabolismo , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
World J Gastroenterol ; 24(9): 992-1003, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29531463

RESUMO

AIM: To elucidate the potential role of autophagy and the protective effects of Jiang Zhi Granule (JZG) in metabolic stress-induced hepatocyte injury. METHODS: An in vitro and in vivo approach was used in this study. HepG2 cells were incubated in culture medium containing palmitate (PA; 0, 0.1, 0.2, 0.3, 0.4 or 0.5 mmol/L) and treated with or without JZG (100 µg/mL) for 24 h or 48 h, and the progression of autophagy was visualized by stable fluorescence-expressing cell lines LC3 and p62. Western blot analyses were performed to examine the expression of LC3-II/LC3-I, p62, mTOR and PI3K, while mitochondrial integrity and oxidative stress were observed by fluorescence staining of JC-1 and reactive oxygen species. C57BL/6 mice were divided into three groups: control group (n = 10), high fat (HF) group (n = 13) and JZG group (n = 13); and, histological staining was carried out to detect inflammation and lipid content in the liver. RESULTS: The cell trauma induced by PA was aggravated in a dose- and time-dependent manner, and hepatic function was improved by JZG. PA had dual effects on autophagy by activating autophagy induction and blocking autophagic flux. The PI3K-AKT-mTOR signaling pathway and the fusion of isolated hepatic autophagosomes and lysosomes were critically involved in this process. JZG activated autophagy progression by either induction of autophagosomes or co-localization of autophagosomes and lysosomes as well as degradation of autolysosomes to protect against PA-induced hepatocyte injury, and protected mitochondrial integrity against oxidative stress in PA-induced mitochondrial dysfunction. In addition, JZG ameliorated lipid droplets and inflammation induced by HF diet in vivo, leading to improved metabolic disorder and associated liver injury in a mouse model of non-alcoholic fatty liver disease (NAFLD). CONCLUSION: Metabolic stress-induced hepatocyte injury exhibited dual effects on autophagy and JZG activated the entire process, resulting in beneficial effects in NAFLD.


Assuntos
Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/toxicidade , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
20.
Oncotarget ; 8(24): 38914-38926, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28473659

RESUMO

A20 is a powerful suppressor for inflammatory response. This study aims to determine A20 level in patients with chronic hepatitis B (CHB), and analyze its association with the disease severity. The role of A20 in inflammatory response was further investigated in vivo and in vitro. Our results showed significantly higher A20 in both serum and liver tissues in CHB patients than in health controls. Serum A20 level was positively correlated with ALT, AST and TNF-α. To induce hepatitis with inflammation and liver injury, mice were injected intraperitoneally with D-galactosamine (D-GalN), resulting in rapid increase of A20 in serum and liver tissues. Consistently, HepG2 and Huh-7 cells exposed to Lipopolysaccharide (LPS) or D-GalN were promoted to express A20. Moreover, overexpression or knockdown of A20 inhibited or increased TNF-α secretion separately. A20 significantly reduced pro-inflammatory cytokines expression and down-regulated phospho-IκBα and phospho-p65 in both cells. In conclusion, elevated A20 expression is involved in the severity of CHB, suggesting A20 to be a possible serological biomarker for the disease prognosis. Additionally, the inflammatory response is attenuated by A20 through inhibiting NF-κB activity, which partially contributes to the hepato-protective function of this molecule. Thus, up-regulating A20 might be a potential strategy for preventing the progress of CHB.


Assuntos
Hepatite B Crônica/patologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Adulto , Animais , Biomarcadores/análise , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA