Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Front Pharmacol ; 15: 1340309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101145

RESUMO

Objective: Gastric intestinal metaplasia (IM) is a precancerous stage associated with gastric cancer. Despite the observed beneficial effects of metformin on IM, its molecular mechanism remains not fully elucidated. This study aims to reveal the effects and potential mechanisms of metformin in treating IM based on both bioinformatics and in vivo investigations. Methods: The seven public databases (GeneCards, DisGeNET, OMIM, SuperPred, Pharm Mapper, Swiss Target Prediction, TargetNet) were used in this work to identify targeted genes related to intestinal metaplasia (IM) and metformin. The shared targeted genes between metformin and IM were further analyzed by network pharmacology, while the interactions in-between were investigated by molecular docking. In parallel, the therapeutic effect of metformin was evaluated in IM mice model, while the core targets and pathways effected by metformin were verified in vivo. Results: We screened out 1,751 IM-related genes and 318 metformin-targeted genes, 99 common genes identified in between were visualized by constructing the protein-protein interaction (PPI) network. The top ten core targeted genes were EGFR, MMP9, HIF1A, HSP90AA1, SIRT1, IL2, MAPK8, STAT1, PIK3CA, and ICAM1. The functional enrichment analysis confirmed that carcinogenesis and HIF-1 signaling pathways were primarily involved in the metformin treatment of IM. Based on molecular docking and dynamics, we found metformin affected the function of its targets by inhibiting receptor binding. Furthermore, metformin administration reduced the progression of IM lesions in Atp4a-/- mice model significantly. Notably, metformin enhanced the expression level of MUC5AC, while inhibited the expression level of CDX2. Our results also showed that metformin modulated the expression of core targets in vivo by reducing the activity of NF-κB and the PI3K/AKT/mTOR/HIF-1α signaling pathway. Conclusion: This study confirms that metformin improves the efficacy of IM treatment by regulating a complex molecular network. Metformin plays a functional role in inhibiting inflammation/apoptosis-related pathways of further IM progression. Our work provides a molecular foundation for understanding metformin and other guanidine medicines in IM treatment.

2.
Heliyon ; 10(13): e33637, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040248

RESUMO

Background: Revealing the role of anoikis resistance plays in CRC is significant for CRC diagnosis and treatment. This study integrated the CRC anoikis-related key genes (CRC-AKGs) and established a novel model for improving the efficiency and accuracy of the prognostic evaluation of CRC. Methods: CRC-ARGs were screened out by performing differential expression and univariate Cox analysis. CRC-AKGs were obtained through the LASSO machine learning algorithm and the LASSO Risk-Score was constructed to build a nomogram clinical prediction model combined with the clinical predictors. In parallel, this work developed a web-based dynamic nomogram to facilitate the generalization and practical application of our model. Results: We identified 10 CRC-AKGs and a risk-related prognostic Risk-Score was calculated. Multivariate COX regression analysis indicated that the Risk-Score, TNM stage, and age were independent risk factors that significantly associated with the CRC prognosis(p < 0.05). A prognostic model was built to predict the outcome with satisfied accuracy (3-year AUC = 0.815) for CRC individuals. The web interactive nomogram (https://yuexiaozhang.shinyapps.io/anoikisCRC/) showed strong generalizability of our model. In parallel, a substantial correlation between tumor microenvironment and Risk-Score was discovered in the present work. Conclusion: This study reveals the potential role of anoikis in CRC and sets new insights into clinical decision-making in colorectal cancer based on both clinical and sequencing data. Also, the interactive tool provides researchers with a user-friendly interface to input relevant clinical variables and obtain personalized risk predictions or prognostic assessments based on our established model.

3.
Chin J Integr Med ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941045

RESUMO

OBJECTIVE: To observe the therapeutic effects and underlying mechanism of baicalin against colon cancer. METHODS: The effects of baicalin on the proliferation and growth of colon cancer cells MC38 and CT26. WT were observed and predicted potential molecular targets of baicalin for colon cancer therapy were studied by network pharmacology. Furthermore, molecular docking and drug affinity responsive target stability (DARTS) analysis were performed to confirm the interaction between potential targets and baicalin. Finally, the mechanisms predicted by in silico analyses were experimentally verified in-vitro and in-vivo. RESULTS: Baicalin significantly inhibited proliferation, invasion, migration, and induced apoptosis in MC38 and CT26 cells (all P<0.01). Additionally, baicalin caused cell cycle arrest at the S phase, while the G0/G1 phase was detected in the tiny portion of the cells. Subsequent network pharmacology analysis identified 6 therapeutic targets associated with baicalin, which potentially affect various pathways including 39 biological processes and 99 signaling pathways. In addition, molecular docking and DARTS predicted the potential binding of baicalin with cyclin dependent kinase inhibitor 2A (CDKN2A), protein kinase B (AKT), caspase 3, and mitogen-activated protein kinase (MAPK). In vitro, the expressions of CDKN2A, MAPK, and p-AKT were suppressed by baicalin in MC38 and CT26 cells. In vivo, baicalin significantly reduced the tumor size and weight (all P<0.01) in the colon cancer mouse model via inactivating p-AKT, CDKN2A, cyclin dependent kinase 4, cyclin dependent kinase 2, interleukin-1, tumor necrosis factor α, and activating caspase 3 and mouse double minute 2 homolog signaling (all P<0.05). CONCLUSION: Baicalin suppressed the CDKN2A protein level to prevent colon cancer and could be used as a therapeutic target for colon cancer.

4.
J Transl Med ; 22(1): 468, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760813

RESUMO

BACKGROUND: Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies. METHOD: The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells. RESULT: Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway. CONCLUSION: The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.


Assuntos
Metaplasia , Humanos , Ar , Modelos Biológicos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Estômago/patologia , Organoides/patologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Regulação Neoplásica da Expressão Gênica , Transcriptoma/genética , Intestinos/patologia
5.
Int Immunopharmacol ; 134: 112177, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696908

RESUMO

BACKGROUND: Ferroptosis, characterized by excessive iron ions and lipid peroxides accumulation, contributes to Nonalcoholic Fatty Liver Disease (NAFLD) development. The role of ADAR1, crucial for lipid metabolism and immune regulation, in ferroptosis-related NAFLD remains unexplored. METHODS: In this study, we analyzed the expression of ADAR1 in NAFLD patients using the GSE66676 database. Subsequently, We investigated the effects of ADAR1 knockdown on mitochondrial membrane potential (MMP), Fe2+ levels, oxidation products, and ferroptosis in NAFLD cells through in vitro and in vivo experiments. Additionally, RNA-seq analysis was performed following ADAR1 depletion in an NAFLD cell model. Overlapping and ferroptosis-related genes were identified using a Venn diagram, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted as well. Furthermore, a protein-protein interaction (PPI) network was constructed to identify hub genes associated with ferroptosis. RESULTS: We found the expression level of ADAR1 was downregulated in NAFLD patients and 22 ferroptosis-associated genes were differentially expressed in a NAFLD cell model upon ADAR1 knockdown. Based on PPI network, we identified NOS2, PTGS2, NOX4, ALB, IL6, and CCL5 as the central genes related to ferroptosis. ADAR1 deletion-related NAFLD was found to be involved in the ferroptosis signaling pathway. NOS2, PTGS2, ALB, and IL6 can serve as potential biomarkers. These findings offer new insights and expanded targets for NAFLD prevention and treatment. CONCLUSION: These findings provide new strategies and potential targets for preventing and treating NAFLD. NOS2, PTGS2, ALB, and IL6 may serve as biomarkers for ADAR1 deletion-related NAFLD, which could help for developing its new diagnostic and therapeutic strategies.


Assuntos
Adenosina Desaminase , Ferroptose , Hepatopatia Gordurosa não Alcoólica , Proteínas de Ligação a RNA , Ferroptose/genética , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Camundongos , RNA-Seq , Masculino , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
6.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609049

RESUMO

INTRODUCTION: Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES: To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS: Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS: We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to ß-catenin, thereby promoting nuclear translocation and transcriptional activity of ß-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/ß-catenin complex. This complex further amplifies H. pylori-induced ß-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION: Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.

7.
Front Microbiol ; 15: 1287077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322318

RESUMO

The development of cancer is not just the growth and proliferation of a single transformed cell, but its tumor microenvironment (TME) also coevolves with it, which is primarily involved in tumor initiation, development, metastasis, and therapeutic responses. Recent years, TME has been emerged as a potential target for cancer diagnosis and treatment. However, the clinical efficacy of treatments targeting the TME, especially its specific components, remains insufficient. In parallel, the gut microbiome is an essential TME component that is crucial in cancer immunotherapy. Thus, assessing and constructing frameworks between the gut microbiota and the TME can significantly enhance the exploration of effective treatment strategies for various tumors. In this review the role of the gut microbiota in human cancers, including its function and relationship with various tumors was summarized. In addition, the interaction between the gut microbiota and the TME as well as its potential applications in cancer therapeutics was described. Furthermore, it was summarized that fecal microbiota transplantation, dietary adjustments, and synthetic biology to introduce gut microbiota-based medical technologies for cancer treatment. This review provides a comprehensive summary for uncovering the mechanism underlying the effects of the gut microbiota on the TME and lays a foundation for the development of personalized medicine in further studies.

8.
Biochem Biophys Res Commun ; 696: 149515, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241815

RESUMO

ZNF131 is a Zinc finger protein that acts as a transcription factor with oncogenic effects in multiple cancers. In this study, we aimed to explore the alternative splicing profile of ZNF131 in hepatocellular carcinoma (HCC), its regulatory effects on cell-cycle progression, and the downstream effectors. ZNF131 transcriptional profile and HCC survival analysis were conducted using data from the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Cancer (LIHC) dataset. Chromatin immunoprecipitation (ChIP)-qPCR and dual-luciferase reporter assays were utilized to explore transcriptional regulation. CCK-8, colony formation and xenograft tumor models were used to study HCC tumor growth. Results showed that ZNF131 isoform 2 is upregulated in HCC tissues and its upregulation was associated with unfavorable overall survival (OS) and progression-free interval (PFI). Knockdown of endogenous ZNF131 inhibits HCC cell growth and induces G2/M cell-cycle arrest. ZNF131 binds to the SMC4 promoter by interacting with ZBTB33 and the ZBTB33 recognizing motif. ZNF131 transcriptionally activates SMC4 expression in HCC cells. The tumor-suppressive effects of ZNF131 shRNA could be partially reversed by enforced SMC4 overexpression. In summary, this study highlights the ZNF131/ZBTB33/SMC4 axis as a driver of pathological cell cycling and proliferation in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
9.
Aging (Albany NY) ; 15(22): 13558-13578, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38016120

RESUMO

Conserved long non-coding RNAs (lncRNAs) have not thoroughly been studied in many cancers, including gastric cancer (GC). We have identified a novel lncRNA PTCHD4-AS which was highly conserved between humans and mice and naturally downregulated in GC cell lines and tissues. Notably, PTCHD4-AS was found to be transcriptionally induced by DNA damage agents and its upregulation led to cell cycle arrest at the G2/M phase, in parallel, it facilitated the cell apoptosis induced by cisplatin (CDDP) in GC. Mechanistically, PTCHD4-AS directly bound to the DNA mismatch repair protein MSH2-MSH6 dimer, and facilitated the binding of dimer to ATM, thereby promoting the expression of phosphorylated ATM, p53 and p21. Here we conclude that the upregulation of PTCHD4-AS inhibits proliferation and increases CDDP sensitivity of GC cells via binding with MSH2-MSH6 dimer, activating the ATM-p53-p21 pathway.


Assuntos
Neoplasias Gástricas , Proteína Supressora de Tumor p53 , Camundongos , Humanos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Dimerização , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cisplatino/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
10.
Front Nutr ; 10: 1121203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545590

RESUMO

Background/aims: Some studies showed that probiotics could improve the composition and structure of gut microbiota. Changes in the gut microbiota may alter bile acid (BAs) composition and kinetics, improving non-alcoholic fatty liver disease (NAFLD). However, it still needs to be clarified how probiotics improve both the metabolism of BAs and NAFLD. This study aimed to reveal the regulatory mechanisms of cholesterol-lowering (CL) probiotics on NAFLD from aspects involved in BA metabolism in FXR gene knockout (FXR-/-) mice. Methods: FXR-/- male mice were randomly divided into three groups based on different interventions for 16 weeks, including normal diet (ND), high-fat diet (HFD), and probiotic intervention in the HFD (HFD+P) group. 16s rDNA sequencing and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were utilized to analyze the changes in gut microbiota and fecal bile acids in mice. Results: We found that the intervention of the CL probiotics improved liver lipid deposition and function in HFD-induced NAFLD mice by decreasing the levels of total cholesterol (TC; p = 0.002) and triglyceride (TG; p = 0.001) in serum, as well as suppressing liver inflammation, such as interleukin-1 beta (IL-1ß; p = 0.002) and tumor necrosis factor-alpha (TNF-α; p < 0.0001). 16S rDNA sequencing and metabolomic analyses showed that probiotics effectively reduced the abundance of harmful gut microbiota, such as Firmicutes (p = 0.005), while concomitantly increasing the abundance of beneficial gut microbiota in NAFLD mice, such as Actinobacteriota (p = 0.378), to improve NAFLD. Compared with the ND group, consuming an HFD elevated the levels of total BAs (p = 0.0002), primary BAs (p = 0.017), and secondary BAs (p = 0.0001) in mice feces, while the intervention with probiotics significantly reduced the increase in the levels of fecal total bile acids (p = 0.013) and secondary bile acids (p = 0.017) induced by HFD. Conclusion: The CL probiotics were found to improve liver function, restore microbiota balance, correct an abnormal change in the composition and content of fecal bile acids, and repair the damaged intestinal mucosal barrier in mice with NAFLD, ultimately ameliorating the condition. These results suggested that CL probiotics may be a promising and health-friendly treatment option for NAFLD.

11.
Front Cell Infect Microbiol ; 13: 1196084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621875

RESUMO

Purpose: To determine the role of Lactobacillus strains and their combinations in inhibiting the colonization of H. pylori and gastric mucosa inflammation. Methods: Human gastric adenocarcinoma AGS cells were incubated with H. pylori and six probiotic strains (Lactobacillus acidophilus NCFM, L. acidophilus La-14, Lactiplantibacillus plantarum Lp-115, Lacticaseibacillus paracasei Lpc-37, Lacticaseibacillus rhamnosus Lr-32, and L. rhamnosus GG) and the adhesion ability of H. pylori in different combinations was evaluated by fluorescence microscopy and urease activity assay. Male C57BL/6 mice were randomly divided into five groups (uninfected, H. pylori, H. pylori+NCFM, H. pylori+Lp-115, and H. pylori+NCFM+Lp-115) and treated with two lactobacilli strains (NCFM and Lp-115) for six weeks. H. pylori colonization and tissue inflammation statuses were determined by rapid urease test, Hematoxylin-Eosin (HE) staining, immunohistochemistry, and qRT-PCR and ELISA. Results: L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, L. paracasei Lpc-37, L. rhamnosus Lr-32, and L. rhamnosus GG reduced H. pylori adhesion and inflammation caused by H. pylori infection in AGS cells and mice. Among all probiotics L. acidophilus NCFM and L. plantarum, Lp-115 showed significant effects on the H. pylori eradication and reduction of inflammation in-vitro and in-vivo. Compared with the H. pylori infection group, the mRNA and protein expression levels of IL-8 and TNF-α in the six Lactobacillus intervention groups were significantly reduced. The changes in the urease activity (ureA and ureB) for 1-7h in each group showed that L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, and L. rhamnosus GG effectively reduced the colonization of H. pylori. We observed a higher ratio of lymphocyte and plasma cell infiltration into the lamina propria of the gastric mucosa and neutrophil infiltration in H. pylori+NCFM+Lp-115 mice. The infiltration of inflammatory cells in lamina propria of the gastric mucosa was reduced in the H. pylori+NCFM+Lp-115 group. Additionally, the expression of IFN-γ was decreased significantly in the NCFM and Lp-115 treated C57BL/6 mice. Conclusions: L. acidophilus NCFM and L. plantarum Lp-115 can reduce the adhesion of H. pylori and inhibit the gastric inflammatory response caused by H. pylori infection.


Assuntos
Gastrite , Helicobacter pylori , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Lactobacillus acidophilus , Urease , Modelos Animais de Doenças , Gastrite/prevenção & controle , Inflamação , Lactobacillus
12.
Front Pharmacol ; 14: 1192210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266156

RESUMO

Objective: Colorectal cancer (CRC) is a common cancer that cannot be detected at an early stage and is a major challenge in oncology research. Studies have shown that vitamin D3 has some anti-cancer and preventive effects on colorectal cancer, but the exact anti-cancer mechanism is not clear. We applied the relevant research methods of network pharmacology to speculate and validate the possible potential pharmacological mechanisms of vitamin D3 for the prevention of colorectal cancer, and to provide more theoretical support for the clinical anticancer effects of vitamin D3. Methods: The relevant targets for vitamin D3 and CRC were obtained from the database of drug and disease targets, respectively. The target of vitamin D3 and the target of colorectal cancer were taken to intersect to obtain common targets. Then, the PPI network was constructed. In addition, the pathways of drug-disease interactions were predicted by GO and KEGG enrichment analysis. Finally, the obtained results were verified to ensure the reliability of the experiments. Results: 51 targets of vitamin D3 for the prevention of colorectal cancer were obtained. The 10 core targets were obtained from the PPI network. The 10 core targets include: ALB, SRC, MMP9, PPARG, HSP90AA1, IGF1, EGFR, MAPK1, MAP2K1 and IGF1R. The core targets were further validated by molecular docking and animal experiments. The results suggest that vitamin D3 plays a key role in the prevention of CRC through core targets, PI3K-Akt pathway, HIF-1 pathway, and FoxO pathway. Conclusion: This study will provide more theoretical support for vitamin D3 to reduce the incidence of CRC and is important to explore more pharmacological effects of vitamin D3.

14.
Front Mol Biosci ; 10: 1097694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006616

RESUMO

Long noncoding RNAs (lncRNAs) possess the potential for therapeutic targeting to treat many disorders, including cancers. Several RNA-based therapeutics (ASOs and small interfering RNAs) have gained FDA approval over the past decade. And with their potent effects, lncRNA-based therapeutics are of emerging significance. One important lncRNA target is LINC-PINT, with its universalized functions and relationship with the famous tumor suppressor gene TP53. Establishing clinical relevance, much like p53, the tumor suppressor activity of LINC-PINT is implicated in cancer progression. Moreover, several molecular targets of LINC-PINT are directly or indirectly used in routine clinical practice. We further associate LINC-PINT with immune responses in colon adenocarcinoma, proposing the potential utility of LINC-PINT as a novel biomarker of immune checkpoint inhibitors. Collectively, current evidence suggests LINC-PINT can be considered for use as a diagnostic/prognostic marker for cancer and several other diseases.

15.
Front Pharmacol ; 14: 1102581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874006

RESUMO

Objective: Curcumin is a plant polyphenol extracted from the Chinese herb turmeric. It was found that curcumin has good anti-cancer properties in a variety of cancers, but the exact mechanism is not clear. Based on the network pharmacology and molecular docking to deeply investigate the molecular mechanism of curcumin for the treatment of colon cancer, it provides a new research direction for the treatment of colon cancer. Methods: Curcumin-related targets were collected using PharmMapper, SwissTargetPrediction, Targetnet and SuperPred. Colon cancer related targets were obtained using OMIM, DisGeNET, GeneCards and GEO databases. Drug-disease intersection targets were obtained via Venny 2.1.0. GO and KEGG enrichment analysis of drug-disease common targets were performed using DAVID. Construct PPI network graphs of intersecting targets using STRING database as well as Cytoscape 3.9.0 and filter core targets. Molecular docking via AutoDockTools 1.5.7. The core targets were further analyzed by GEPIA, HPA, cBioPortal and TIMER databases. Results: A total of 73 potential targets of curcumin for the treatment of colon cancer were obtained. GO function enrichment analysis yielded 256 entries, including BP(Biological Progress):166, CC(celluar component):36 and MF(Molecular Function):54. The KEGG pathway enrichment analysis yielded 34 signaling pathways, mainly involved in Metabolic pathways, Nucleotide metabolism, Nitrogen metabolism, Drug metabolism - other enzymes, Pathways in cancer,PI3K-Akt signaling pathway, etc. CDK2, HSP90AA1, AURKB, CCNA2, TYMS, CHEK1, AURKA, DNMT1, TOP2A, and TK1 were identified as core targets by Cytoscape 3.9.0. Molecular docking results showed that the binding energies of curcumin to the core targets were all less than 0 kJ-mol-1, suggesting that curcumin binds spontaneously to the core targets. These results were further validated in terms of mRNA expression levels, protein expression levels and immune infiltration. Conclusion: Based on network pharmacology and molecular docking initially revealed that curcumin exerts its therapeutic effects on colon cancer with multi-target, multi-pathway. Curcumin may exert anticancer effects by binding to core targets. Curcumin may interfere with colon cancer cell proliferation and apoptosis by regulating signal transduction pathways such as PI3K-Akt signaling pathway,IL-17 signaling pathway, Cell cycle. This will deepen and enrich our understanding of the potential mechanism of curcumin against colon cancer and provide a theoretical basis for subsequent studies.

16.
Front Pharmacol ; 14: 1338260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259281

RESUMO

Objective: Vitamin D3 has the general properties of a lipid-soluble vitamin, but is also an active steroid hormone that can regulate the proliferation, apoptosis and differentiation of many tumor cells, and exerts anticancer activity against numerous malignancies. However, the mechanism underlying the effects of vitamin D3 on tumors is not fully understood. Here, we used network pharmacology and in vitro experimental approaches to explore the mechanism of vitamin D3 activity in the context of gastric cancer. Methods: The Targetnet, SuperPred, SwissTargetPrediction, and PharmMapper databases were screened for potential drug-related targets, while we used data from the PharmGKB, Drugbank, OMIM, DisGeNET, CTD, and GeneCards databases to identify potential targets associated with gastric cancer. Disease-drug crossover genes were obtained by constructing Venn diagrams. Gene ontology and Kyoto Encyclopedia of Genomes (KEGG) enrichment analyses of crossover genes were conducted and STRING was used to generate protein interaction networks and identify core targets. CCK-8 experiments were performed and apoptosis detected to assess the effect of vitamin D3 on gastric cancer cells. Western blotting was applied to detect p53/AMPK/mTOR signaling, as well as autophagy-, cell cycle-, and apoptosis-related proteins. Results: A total of 485 targets of vitamin D3 activity were obtained and 1200 gastric cancer disease-related targets discovered. Further, 60 potential targets for vitamin D3 in gastric cancer treatment were identified. KEGG analysis indicated that potential targets were mainly involved in the cell cycle, HIF-1 signaling, and the AMPK pathway, among other pathways. These findings were validated using cellular experiments, which demonstrated that the viability of AGS and SGC-7901 cells was impeded by vitamin D3. Further, vitamin D3 promoted apoptosis and inhibited the cell cycle in those cell lines, as well as activating the p53/AMPK/mTOR pathway, which promotes autophagy and inhibits tumor development. Conclusion: Our network pharmacological analyses provide preliminarily data supporting a role for vitamin D3 in promoting autophagy and apoptosis in gastric cancer cells, and in activating the p53/AMPK/mTOR pathway, which inhibits gastric cancer cell proliferation. Our findings demonstrate the molecular mechanism underlying the effect of vitamin D3 in cure of gastric cancer.

17.
Oncol Res ; 32(2): 283-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186577

RESUMO

Nicotinamide adenine dinucleotide (NAD+) plays an essential role in cellular metabolism, mitochondrial homeostasis, inflammation, and senescence. However, the role of NAD+-regulated genes, including coding and long non-coding genes in cancer development is poorly understood. We constructed a prediction model based on the expression level of NAD+ metabolism-related genes (NMRGs). Furthermore, we validated the expression of NMRGs in gastric cancer (GC) tissues and cell lines; additionally, ß-nicotinamide mononucleotide (NMN), a precursor of NAD+, was used to treat the GC cell lines to analyze its effects on the expression level of NMRGs lncRNAs and cellular proliferation, cell cycle, apoptosis, and senescence-associated secretory phenotype (SASP). A total of 13 NMRGs-related lncRNAs were selected to construct prognostic risk signatures, and patients with high-risk scores had a poor prognosis. Some immune checkpoint genes were upregulated in the high-risk group. In addition, cell cycle, epigenetics, and senescence were significantly downregulated in the high-risk group. Notably, we found that the levels of immune cell infiltration, including CD8 T cells, CD4 naïve T cells, CD4 memory-activated T cells, B memory cells, and naïve B cells, were significantly associated with risk scores. Furthermore, the treatment of NMN showed increased proliferation of AGS and MKN45 cells. In addition, the expression of SASP factors (IL6, IL8, IL10, TGF-ß, and TNF-α) was significantly decreased after NMN treatment. We conclude that the lncRNAs associated with NAD+ metabolism can potentially be used as biomarkers for predicting clinical outcomes of GC patients.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , NAD , Neoplasias Gástricas/genética , Prognóstico , Biomarcadores
18.
Toxicology ; 482: 153356, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283488

RESUMO

Dysfunction of immune regulation plays a crucial role in the pathogenesis of many immune disorders in the body. The underlying mechanism is still not completely understood. Environmental pollution contributes to immune de-regulation. 3-methyl-4-nitrophenol (MNP) is one of the major environmental pollutants. This study aims to investigate the role of MNP in compromising immune regulatory functions in the intestine. A food allergy (FA) mouse model was established using ovalbumin (OVA) as the specific antigen. The activities of regulatory T cells in the mouse intestine were evaluated by flow cytometry and enzyme-linked immunosorbent assay. We found that MNP reduced the CD4+ Foxp3+ Treg frequency, increased Th17 cells, and converted Tregs to Th17 cells in the intestine. MNP induced the expression of IL-6 in regulatory T cells (Tregs). Estrogen receptor (ER) mediated the effects of MNP on promoting IL-6 expression in Tregs. The IL-6 in synergy with transforming growth factor (TGF)-ß to convert Tregs to Th17 cells. The concomitant exposure of MNP and OVA induced FA like response in mice. Modulation of the ER-STAT3-IL-6 signal pathway attenuated mouse FA response. In summary, MNP, an environmental pollutant, acts as an immunoadjuvant for developing FA. By activation of the estrogen receptor, MNP induces Tregs to express IL-6. IL-6 in synergy with TGF-ß converts Tregs to Th17 cells.


Assuntos
Poluentes Ambientais , Linfócitos T Reguladores , Camundongos , Animais , Nitrofenóis/toxicidade , Nitrofenóis/metabolismo , Poluentes Ambientais/metabolismo , Receptores de Estrogênio/metabolismo , Interleucina-6/metabolismo , Células Th17 , Ovalbumina , Fator de Crescimento Transformador beta/metabolismo , Intestinos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia
19.
Front Genet ; 13: 869967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754804

RESUMO

Gastric cancer (GC) is a highly fatal and common malignancy of the digestive system. Recent therapeutic advancements have significantly improved the clinical outcomes in GC, but due to the unavailability of suitable molecular targets, a large number of patients do not respond to the immune checkpoint inhibitors (ICI) therapy. To identify and validate potential therapeutic and prognostic targets of gastric cancer, we used the "inferCNV" R package for analyzing single-cell sequencing data (GSE112302) of GC and normal epithelial cells. First, by using LASSO, we screened genes that were highly correlated with copy number variations (CNVs). Therefrom, five gene signature (CPVL, DDC, GRTP1, ONECUT2, and PRSS21) was selected by cross-validating the prognosis and risk management with the GC RNA-seq data obtained from GEO and TCGA. Moreover, the correlation analyses between CNVs of these genes and immune cell infiltration in gastric cancer identified CPVL as a potential prognostic marker. Finally, CPVL showed high expression in gastric cancer samples and cell lines, then siRNA-mediated silencing of CPVL expression in gastric cancer cells showed significant proliferation arrest in MGC803 cells. Here, we conclude that CNVs are key regulators of the immune cells infiltration in gastric TME as well as cancer development, and CPVL could potentially be used as a prognostic and therapeutic marker in gastric cancer.

20.
Dis Markers ; 2022: 7932655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401882

RESUMO

Colorectal cancer (COAD) is ranked as the third most common cancer and second in terms of cancer-related deaths worldwide. Due to its poor overall survival and prognosis, the incidents of COAD are significantly increasing. Although treatment methods have greatly been improved in the last decade, it is still not good enough to have satisfactory treatment outcomes. In recent years, immunotherapy has been successful to some extent in the treatment of many cancers but still, many patients do not respond to immunotherapy. Therefore, it is essential to have a deeper understanding of the immune characteristics of the tumor microenvironment and identify meaningful immune targets. In terms of immune targets, COAD has been poorly explored; thus, in the current study, based on the immune cell infiltration score and differentially expressed genes, COAD tumors were classified into hot and cold tumors. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was used to identify hub genes, construct a prognostic model, and screen potential immune targets. In total, 12 genes (CLK3, CYSLTR2, GJA10, CYP4Z1, FAM185A, LINC00324, EEF1A1P34, EEF1B2P8, PTCSC3, MIR6780A, LINC01666, and RNU6.661P) differentially expressed between hot and cold tumors were screened out. Among them, CYSLTR2 was considered as a potential candidate gene, because it showed a significant positive correlation with immune cell infiltration and immune checkpoints (PDCD1, CD274, and CTLA4). Finally, we constructed and validated a new prognostic model for COAD showing 0.854 AUC for the ROC curve, and these results provide sufficient potential to choose CYSLTR2 as an important immune target for the prognosis of COAD.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Humanos , Prognóstico , Curva ROC , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA