Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443470

RESUMO

K-Ras is the most commonly mutated oncogene in human cancer. The recently approved non-small cell lung cancer drugs sotorasib and adagrasib covalently capture an acquired cysteine in K-Ras-G12C mutation and lock it in a signaling-incompetent state. However, covalent inhibition of G12D, the most frequent K-Ras mutation particularly prevalent in pancreatic ductal adenocarcinoma, has remained elusive due to the lack of aspartate-targeting chemistry. Here we present a set of malolactone-based electrophiles that exploit ring strain to crosslink K-Ras-G12D at the mutant aspartate to form stable covalent complexes. Structural insights from X-ray crystallography and exploitation of the stereoelectronic requirements for attack of the electrophile allowed development of a substituted malolactone that resisted attack by aqueous buffer but rapidly crosslinked with the aspartate-12 of K-Ras in both GDP and GTP state. The GTP-state targeting allowed effective suppression of downstream signaling, and selective inhibition of K-Ras-G12D-driven cancer cell proliferation in vitro and xenograft growth in mice.

2.
Anal Chem ; 95(50): 18344-18351, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38060502

RESUMO

Protein properties and interactions have been widely investigated by using external labels. However, the micromolar sensitivity of the current dyes limits their applicability due to the high material consumption and assay cost. In response to this challenge, we synthesized a series of cyanine5 (Cy5) dye-based quencher molecules to develop an external dye technique to probe proteins at the nanomolar protein level in a high-throughput one-step assay format. Several families of Cy5 dye-based quenchers with ring and/or side-chain modifications were designed and synthesized by introducing organic small molecules or peptides. Our results showed that steric hindrance and electrostatic interactions are more important than hydrophobicity in the interaction between the luminescent negatively charged europium-chelate-labeled peptide (Eu-probe) and the quencher molecules. The presence of substituents on the quencher indolenine rings reduces their quenching property, whereas the increased positive charge on the indolenine side chain improved the interaction between the quenchers and the luminescent compound. The designed quencher structures entirely altered the dynamics of the Eu-probe (protein-probe) for studying protein stability and interactions, as we were able to reduce the quencher concentration 100-fold. Moreover, the new quencher molecules allowed us to conduct the experiments using neutral buffer conditions, known as the peptide-probe assay. These improvements enabled us to apply the method in a one-step format for nanomolar protein-ligand interaction and protein profiling studies instead of the previously developed two-step protocol. These improvements provide a faster and simpler method with lower material consumption.


Assuntos
Corantes , Peptídeos , Carbocianinas/química , Peptídeos/química , Luminescência , Corantes Fluorescentes/química
3.
Nat Chem Biol ; 18(6): 596-604, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35314814

RESUMO

Current small-molecule inhibitors of KRAS(G12C) bind irreversibly in the switch-II pocket (SII-P), exploiting the strong nucleophilicity of the acquired cysteine as well as the preponderance of the GDP-bound form of this mutant. Nevertheless, many oncogenic KRAS mutants lack these two features, and it remains unknown whether targeting the SII-P is a practical therapeutic approach for KRAS mutants beyond G12C. Here we use NMR spectroscopy and a cellular KRAS engagement assay to address this question by examining a collection of SII-P ligands from the literature and from our own laboratory. We show that the SII-Ps of many KRAS hotspot (G12, G13, Q61) mutants are accessible using noncovalent ligands, and that this accessibility is not necessarily coupled to the GDP state of KRAS. The results we describe here emphasize the SII-P as a privileged drug-binding site on KRAS and unveil new therapeutic opportunities in RAS-driven cancer.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Ligantes , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
J Med Chem ; 65(4): 3119-3122, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35167298

RESUMO

Since its discovery as the first human oncogene in 1983, the small GTPase KRAS has been a major target of cancer drug discovery. The paper reported in this issue describes a long-awaited small molecule drug candidate of the oncogenic KRAS (G12D) mutant for the treatment of currently incurable pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Alelos , Animais , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação
5.
ACS Cent Sci ; 7(5): 815-830, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079898

RESUMO

Transcriptional coregulators, which mediate chromatin-dependent transcriptional signaling, represent tractable targets to modulate tumorigenic gene expression programs with small molecules. Genetic loss-of-function studies have recently implicated the transcriptional coactivator, ENL, as a selective requirement for the survival of acute leukemia and highlighted an essential role for its chromatin reader YEATS domain. Motivated by these discoveries, we executed a screen of nearly 300,000 small molecules and identified an amido-imidazopyridine inhibitor of the ENL YEATS domain (IC50 = 7 µM). Improvements to the initial screening hit were enabled by adopting and expanding upon a SuFEx-based approach to high-throughput medicinal chemistry, ultimately demonstrating that it is compatible with cell-based drug discovery. Through these efforts, we discovered SR-0813, a potent and selective ENL/AF9 YEATS domain inhibitor (IC50 = 25 nM). Armed with this tool and a first-in-class ENL PROTAC, SR-1114, we detailed the biological response of AML cells to pharmacological ENL disruption for the first time. Most notably, we discovered that ENL YEATS inhibition is sufficient to selectively suppress ENL target genes, including HOXA9/10, MYB, MYC, and a number of other leukemia proto-oncogenes. Cumulatively, our study establishes YEATS domain inhibition as a viable approach to disrupt the pathogenic function of ENL in acute leukemia and provides the first thoroughly characterized chemical probe for the ENL YEATS domain.

6.
J Am Chem Soc ; 143(10): 3753-3763, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33630577

RESUMO

The lack of efficient [18F]fluorination processes and target-specific organofluorine chemotypes remains the major challenge of fluorine-18 positron emission tomography (PET). We report here an ultrafast isotopic exchange method for the radiosynthesis of novel PET agent aryl [18F]fluorosulfate enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully automated 18F-radiolabeling of 25 structurally and functionally diverse aryl fluorosulfates with excellent radiochemical yield (83-100%, median 98%) and high molar activity (280 GBq µmol-1) at room temperature in 30 s. The purification of radiotracers requires no time-consuming HPLC but rather a simple cartridge filtration. We further demonstrate the imaging application of a rationally designed poly(ADP-ribose) polymerase 1 (PARP1)-targeting aryl [18F]fluorosulfate by probing subcutaneous tumors in vivo.


Assuntos
Química Click , Fluoretos/química , Compostos Radiofarmacêuticos/síntese química , Compostos de Enxofre/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Meios de Contraste/química , Meios de Contraste/metabolismo , Teoria da Densidade Funcional , Estabilidade de Medicamentos , Fluoretos/síntese química , Fluoretos/metabolismo , Radioisótopos de Flúor/química , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/metabolismo , Compostos de Enxofre/síntese química , Compostos de Enxofre/metabolismo , Transplante Heterólogo
7.
J Am Chem Soc ; 142(25): 10899-10904, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32479075

RESUMO

Optimization of small-molecule probes or drugs is a synthetically lengthy, challenging, and resource-intensive process. Lack of automation and reliance on skilled medicinal chemists is cumbersome in both academic and industrial settings. Here, we demonstrate a high-throughput hit-to-lead process based on the biocompatible sulfur(VI) fluoride exchange (SuFEx) click chemistry. A high-throughput screening hit benzyl (cyanomethyl)carbamate (Ki = 8 µM) against a bacterial cysteine protease SpeB was modified with a SuFExable iminosulfur oxydifluoride [RN═S(O)F2] motif, rapidly diversified into 460 analogs in overnight reactions, and the products were directly screened to yield drug-like inhibitors with 480-fold higher potency (Ki = 18 nM). We showed that the improved molecule is active in a bacteria-host coculture. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, we anticipate our methodology can accelerate the development of robust biological probes and drug candidates.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Exotoxinas/antagonistas & inibidores , Compostos de Enxofre/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Química Click , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/toxicidade , Descoberta de Drogas , Exotoxinas/química , Exotoxinas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Células Jurkat , Microssomos Hepáticos/metabolismo , Estudo de Prova de Conceito , Ligação Proteica
8.
Angew Chem Int Ed Engl ; 58(14): 4552-4556, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30740848

RESUMO

SuFEx is a new-generation click chemistry transformation that exploits the unique properties of S-F bonds and their ability to undergo near-perfect reactions with nucleophiles. We report here the first SuFEx-based procedure for the efficient synthesis of pharmaceutically important triflones and bis(trifluoromethyl)sulfur oxyimines from sulfonyl fluorides and iminosulfur oxydifluorides, respectively. The new process involves rapid S-F exchange with trifluoromethyltrimethylsilane (TMSCF3 ) upon activation by potassium bifluoride in anhydrous DMSO. The reaction tolerates a wide selection of substrates and proceeds under mild conditions without need for chromatographic purification. A tentative mechanism is proposed involving nucleophilic displacement of S-F by the trifluoromethyl anion via a five-coordinate intermediate. The utility of late-stage SuFEx trifluoromethylation is demonstrated through the synthesis and selective anticancer properties of a bis(trifluoromethyl)sulfur oxyimine.


Assuntos
Fluoretos/química , Iminas/química , Ácidos Sulfínicos/química , Enxofre/química , Química Click , Hidrocarbonetos Fluorados/química , Íons/química , Metilação , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA