Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1329801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384802

RESUMO

Background: Radiomics, an emerging field, presents a promising avenue for the accurate prediction of biomarkers in different solid cancers. Lung cancer remains a significant global health challenge, contributing substantially to cancer-related mortality. Accurate assessment of Ki-67, a marker reflecting cellular proliferation, is crucial for evaluating tumor aggressiveness and treatment responsiveness, particularly in non-small cell lung cancer (NSCLC). Methods: A systematic review and meta-analysis conducted following the preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guidelines. Two authors independently conducted a literature search until September 23, 2023, in PubMed, Embase, and Web of Science. The focus was on identifying radiomics studies that predict Ki-67 expression in lung cancer. We evaluated quality using both Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. For statistical analysis in the meta-analysis, we used STATA 14.2 to assess sensitivity, specificity, heterogeneity, and diagnostic values. Results: Ten retrospective studies were pooled in the meta-analysis. The findings demonstrated that the use of computed tomography (CT) scan-based radiomics for predicting Ki-67 expression in lung cancer exhibited encouraging diagnostic performance. Pooled sensitivity, specificity, and area under the curve (AUC) in training cohorts were 0.78, 0.81, and 0.85, respectively. In validation cohorts, these values were 0.78, 0.70, and 0.81. Quality assessment using QUADAS-2 and RQS indicated generally acceptable study quality. Heterogeneity in training cohorts, attributed to factors like contrast-enhanced CT scans and specific Ki-67 thresholds, was observed. Notably, publication bias was detected in the training cohort, indicating that positive results are more likely to be published than non-significant or negative results. Thus, journals are encouraged to publish negative results as well. Conclusion: In summary, CT-based radiomics exhibit promise in predicting Ki-67 expression in lung cancer. While the results suggest potential clinical utility, additional research efforts should concentrate on enhancing diagnostic accuracy. This could pave the way for the integration of radiomics methods as a less invasive alternative to current procedures like biopsy and surgery in the assessment of Ki-67 expression.

2.
Bioengineered ; 12(1): 8407-8418, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34657551

RESUMO

The microRNA miR-130a-3p (miR-130a-3p) has anti-tumor activity against numerous cancer types. Further, miR-130a-3p may target Wnt signaling, which is a critical pathway regulating tumorigenesis. Functions of miR-130a-3p in colorectal cancer (CRC) and contributions of Wnt1 pathway modulation, however, have not been examined, hence the exploration on these two aspects. In this study, in comparison with normal controls, both CRC tissue and multiple CRC cell lines showed downregulated miR-130a-3p. MiR-130a-3p overexpression contributed to a decrease in CRC cell proliferation. Additionally, its overexpression also caused reduced expression of WNT Family Member 1 (WNT1) and downstream WNT pathway factors c-myc and cyclin D1. Dual-luciferase assay revealed WNT1 as a direct target of miR-130a-3p, and further the inhibitory effect of miR-130a-3p on c-myc and cyclin D1 was proved to be reversed by overexpressed WNT1. Collectively, miR-130a-3p inhibits CRC growth by directly targeting WNT1, and miR-130a-3p and WNT1 pathway-associated factors are defined as potential targets for CRC treatment.


Assuntos
Neoplasias Colorretais/patologia , Regulação para Baixo , MicroRNAs/genética , Proteína Wnt1/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Ciclina D1/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA