Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 867: 172844, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31811859

RESUMO

This study tested the hypothesis that the enhancement of glucagon-like peptide-1 (GLP-1) level through either exogenous supply of GLP-1 agonist, liraglutide or prevention of endogenous GLP-1 degradation with dipeptidyl peptidease-4 inhibitor, lingaliptin ameliorates angiotensin II (Ang II)-induced renal fibrosis. Sprague-Dawley rats were randomly divided into four groups: 0.9% saline or Ang II (500 ng/kg/min) was infused with osmotic minipumps for 4 weeks, defined as sham and Ang II groups. In drug treated groups, liraglutide (0.3 mg/kg) was injected subcutaneously twice daily or linagliptin (8 mg/kg) was administered daily via oral gavage during Ang II infusion. Compared with Ang II stimulation, liraglutide or linagliptin comparatively down-regulated the protein level of the AT1 receptor, and up-regulated the AT2 receptor, as identified by a reduced AT1/AT2 ratio (all p < 0.05), consistent with less locally-expressed AT1 receptor and enhanced AT2 receptor in the glomerular capillaries and proximal tubules of the renal cortex. Furthermore, both drugs significantly increased the expression of GLP-1 receptor and attenuated the protein levels of TLR4, NOX4 and IL-6. The populations of macrophages and α-SMA expressing myofibroblasts decreased with treatment of liraglutide and linagliptin, in coincidence with the reduced expression of phosphor-Smad2/3, Smad4, TGFß1, and up-regulated Smad7. Along with these modulations, renal morphology was preserved and synthesis of fibronectin/collagen I was down-regulated, as identified by small collagen-rich area in the renal cortex. These results suggest that the preservation of GLP-1 level using liraglutide or linagliptin might be considered as an add-on therapeutic option for inhibiting Ang II induced renal fibrosis and failure.


Assuntos
Angiotensina II/metabolismo , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Incretinas/administração & dosagem , Falência Renal Crônica/prevenção & controle , Rim/patologia , Angiotensina II/administração & dosagem , Animais , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Fibrose , Peptídeo 1 Semelhante ao Glucagon/agonistas , Humanos , Rim/efeitos dos fármacos , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Linagliptina/administração & dosagem , Liraglutida/administração & dosagem , Masculino , Proteólise/efeitos dos fármacos , Ratos
2.
Mol Biol Rep ; 47(2): 1207-1222, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31820314

RESUMO

Aldosterone produced in adrenal glands by angiotensin II (Ang II) is known to elicit myocardial fibrosis and hypertrophy. This study was designed to test the hypothesis that Ang II causes cardiac morphological changes through the steroidogenic acute regulatory protein (StAR)/aldosterone synthase (AS)-dependent aldosterone synthesis primarily initiated in the heart. Sprague-Dawley rats were randomized to following groups: Ang II infusion for a 4-week period, treatment with telmisartan, spironolactone or adrenalectomy during Ang II infusion. Sham-operated rats served as control. Relative to Sham rats, Ang II infusion significantly increased the protein levels of AT1 receptor, StAR, AS and their tissue expression in the adrenal glands and heart. In coincidence with reduced aldosterone level in the heart, telmisartan, an AT1 receptor blocker, significantly down-regulated the protein level and expression of StAR and AS. Ang II induced changes in the expression of AT1/StAR/AS were not altered by an aldosterone receptor antagonist spironolactone. Furthermore, Ang II augmented migration of macrophages, protein level of TGFß1, phosphorylation of Smad2/3 and proliferation of myofibroblasts, accompanied by enhanced perivascular/interstitial collagen deposition and cardiomyocyte hypertrophy, which all were significantly abrogated by telmisartan or spironolactone. However, adrenalectomy did not fully suppress Ang II-induced cell migration/proliferation and fibrosis/hypertrophy, indicating a role of aldosterone synthesized within the heart in pathogenesis of Ang II induced injury. These results indicate that myocardial fibrosis and hypertrophy stimulated by Ang II is associated with tissue-specific activation of aldosterone synthesis, primarily mediated by AT1/StAR/AS signaling pathways.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Fosfoproteínas/genética , Glândulas Suprarrenais/metabolismo , Animais , Biomarcadores , Biópsia , Cardiomegalia/patologia , Cardiomiopatias/patologia , Colágeno/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrose , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Modelos Biológicos , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
3.
Shock ; 51(3): 372-380, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29470359

RESUMO

This study tested the hypothesis that CD44 is involved in the development of cardiac fibrosis via angiotensin II (Ang II) AT1 receptor-stimulated TNFα/NFκB/IκB signaling pathways. Study was conducted in C57BL/6 wild type and CD44 knockout mice subjected to Ang II infusion (1,000 ng/kg/min) using osmotic minipumps up to 4 weeks or with gastric gavage administration of the AT1 receptor blocker, telmisartan at a dose of 10 mg/kg/d. Results indicated that Ang II enhances expression of the AT1 receptor, TNFα, NFκB, and CD44 as well as downregulates IκB. Further analyses revealed that Ang II increases macrophage migration, augments myofibroblast proliferation, and induces vascular/interstitial fibrosis. Relative to the Ang II group, treatment with telmisartan significantly reduced expression of the AT1 receptor and TNFα. These changes occurred in coincidence with decreased NFκB, increased IκB, and downregulated CD44 in the intracardiac vessels and intermyocardium. Furthermore, macrophage migration and myofibroblast proliferation were inhibited and fibrosis was attenuated. Knockout of CD44 did not affect Ang II-stimulated AT1 receptor and modulated TNFα/NFκB/IκB signaling, but significantly reduced macrophage/myofibroblast-mediated fibrosis as identified by less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in the development of cardiac fibrosis by stimulating TNFα/NFκB/IκB-triggered CD44 signaling pathways. Knockout of CD44 blocked Ang II-induced cell migration/proliferation and cardiac fibrosis. Therefore, selective inhibition of CD44 may be considered as a potential therapeutic target for attenuating Ang II-induced deleterious cardiovascular effects.


Assuntos
Angiotensina II/efeitos adversos , Cardiopatias/prevenção & controle , Receptores de Hialuronatos/deficiência , Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Feminino , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Cardiopatias/metabolismo , Receptores de Hialuronatos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miocárdio/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Drug Des Devel Ther ; 11: 3019-3033, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081650

RESUMO

Angiotensin II (Ang II) is known to be involved in the progression of ventricular dysfunction and heart failure by eliciting cardiac fibrosis. The purpose of this study was to demonstrate whether treatment with an antioxidant compound, edaravone, reduces cardiac fibrosis and improves ventricular function by inhibiting Ang II AT1 receptor. The study was conducted in a rat model of transverse aortic constriction (TAC). In control, rats were subjected to 8 weeks of TAC. In treated rats, edaravone (10 mg/kg/day) or Ang II AT1 receptor blocker, telmisartan (10 mg/kg/day) was administered by intraperitoneal injection or gastric gavage, respectively, during TAC. Relative to the animals with TAC, edaravone reduced myocardial malonaldehyde level and increased superoxide dismutase activity. Protein level of the AT1 receptor was reduced and the AT2 receptor was upregulated, as evidenced by the reduced ratio of AT1 over AT2 receptor (0.57±0.2 vs 3.16±0.39, p<0.05) and less locally expressed AT1 receptor in the myocardium. Furthermore, the protein level of angiotensin converting enzyme 2 was upregulated. In coincidence with these changes, edaravone significantly decreased the populations of macrophages and myofibroblasts in the myocardium, which were accompanied by reduced levels of transforming growth factor beta 1 and Smad2/3. Collagen I synthesis was inhibited and collagen-rich fibrosis was attenuated. Relative to the TAC group, cardiac systolic function was preserved, as shown by increased left ventricular systolic pressure (204±51 vs 110±19 mmHg, p<0.05) and ejection fraction (82%±3% vs 60%±5%, p<0.05). Treatment with telmisartan provided a comparable level of protection as compared with edaravone in all the parameters measured. Taken together, edaravone treatment ameliorates cardiac fibrosis and improves left ventricular function in the pressure overload rat model, potentially via suppressing the AT1 receptor-mediated signaling pathways. These data indicate that edaravone might be selected in combination with other existing drugs in preventing progression of cardiac dysfunction in heart failure.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antipirina/análogos & derivados , Sequestradores de Radicais Livres/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Antipirina/farmacologia , Aorta/patologia , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Modelos Animais de Doenças , Edaravone , Fibrose/prevenção & controle , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Miocárdio/patologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Peptidil Dipeptidase A/genética , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/genética , Telmisartan
5.
J Renin Angiotensin Aldosterone Syst ; 18(2): 1470320317706653, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28490219

RESUMO

INTRODUCTION: The purpose of this study was to determine whether macrophages migrated from the spleen are associated with angiotensin II-induced cardiac fibrosis and hypertension. METHODS: Sprague-Dawley rats were subjected to angiotensin II infusion in vehicle (500 ng/kg/min) for up to four weeks. In splenectomy, the spleen was removed before angiotensin II infusion. In the angiotensin II AT1 receptor blockade, telmisartan was administered by gastric gavage (10 mg/kg/day) during angiotensin II infusion. The heart and aorta were isolated for Western blot analysis and immunohistochemistry. RESULTS: Angiotensin II infusion caused a significant reduction in the number of monocytes in the spleen through the AT1 receptor-activated monocyte chemoattractant protein-1. Comparison of angiotensin II infusion, splenectomy and telmisartan comparatively reduced the recruitment of macrophages into the heart. Associated with this change, transforming growth factor ß1 expression and myofibroblast proliferation were inhibited, and Smad2/3 and collagen I/III were downregulated. Furthermore, interstitial/perivascular fibrosis was attenuated. These modifications occurred in coincidence with reduced blood pressure. At week 4, invasion of macrophages and myofibroblasts in the thoracic aorta was attenuated and expression of endothelial nitric oxide synthase was upregulated, along with a reduction in aortic fibrosis. CONCLUSIONS: These results suggest that macrophages when recruited into the heart and aorta from the spleen potentially contribute to angiotensin II-induced cardiac fibrosis and hypertension.


Assuntos
Hipertensão/patologia , Macrófagos/patologia , Miocárdio/patologia , Baço/patologia , Angiotensina II , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Pressão Sanguínea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Fibrose , Macrófagos/efeitos dos fármacos , Masculino , Monócitos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Proteínas Smad/metabolismo , Esplenectomia , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA