Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Front Immunol ; 15: 1383978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756774

RESUMO

Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Imunoterapia/métodos , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia Viral Oncolítica/métodos , Biomarcadores Tumorais , Terapia Combinada
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 289-295, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710512

RESUMO

Objective To evaluate the toxicology of targeting human epidermal growth factor receptor-2 chimeric antigen receptor T (HER2-CAR-T) cells and to provide a safety basis for the clinical evaluation of HER2-CAR-T cell therapy. Methods The recombinant lentiviral vector was used to generate HER2-CAR-T cells. Soft agar colony formation assay was used to observe the colony formation of HER2-CAR-T cells, and the colony formation rate was statistically analyzed. The HER2-CAR-T cell suspension was co-incubated with rabbit red blood cell suspension, and the hemolysis of red blood cells was evaluated by direct observation and microplate reader detection. The HER2-CAR-T cell preparation was injected into the ear vein of male New Zealand rabbits, and the stimulating effect of HER2-CAR-T cells on the blood vessels of the animals was observed by staining of tissue sections. The vesicular stomatitis virus envelope glycoprotein (VSV-G) gene of pMD 2.G vector was used as the target sequence, and the safety of the lentiviral vector was verified by real-time fluorescence quantitative PCR. The heart, liver, lung, and kidney of mice receiving HER2-CAR-T cell infusion were collected, and the lesions were observed by HE staining. Results The HER2-CAR-T cells were successfully prepared. These cells did not exhibit soft agar colony formation ability in vitro, and the HER2-CAR-T cell preparation did not cause hemolysis in New Zealand rabbit red blood cells. After the infusion of HER2-CAR-T cells into the ear vein of New Zealand rabbits, no obvious vascular stimulation response was found, and no specific amplification of VSV-G was detected. No obvious lesions were found in the heart, liver, lung and kidney tissues of the treatment group. Conclusion The prepared HER2-CAR-T cells have reliable safety.


Assuntos
Receptor ErbB-2 , Receptores de Antígenos Quiméricos , Animais , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Coelhos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Masculino , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Vetores Genéticos/genética , Lentivirus/genética , Feminino
3.
Thorax ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631896

RESUMO

BACKGROUND: Individual exposure to environmental pollutants, as one of the most influential drivers of respiratory disorders, has received considerable attention due to its preventability and controllability. Considering that the extracellular vesicle (EV) was an emerging intercellular communication medium, recent studies have highlighted the crucial role of environmental pollutants derived EVs (EPE-EVs) in respiratory disorders. METHODS: PubMed and Web of Science were searched from January 2018 to December 2023 for publications with key words of environmental pollutants, respiratory disorders and EVs. RESULTS: Environmental pollutants could disrupt airway intercellular communication by indirectly stimulating airway barrier cells to secrete endogenous EVs, or directly transmitting exogenous EVs, mainly by biological pollutants. Mechanistically, EPE-EVs transferred specific contents to modulate biological functions of recipient cells, to induce respiratory inflammation and impair tissue and immune function, which consequently contributed to the development of respiratory diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pulmonary hypertension, lung cancer and infectious lung diseases. Clinically, EVs could emerged as promising biomarkers and biological agents for respiratory diseases attributed by their specificity, convenience, sensibility and stability. CONCLUSIONS: Further studies of EPE-EVs are helpful to understand the aetiology and pathology of respiratory diseases, and facilitate the precision respiratory medicine in risk screening, early diagnosis, clinical management and biotherapy.

4.
Cell Transplant ; 33: 9636897241245796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629748

RESUMO

Immunoregulation and indoleamine 2,3-dioxygenase 1 (IDO1) play pivotal roles in the rejection of allogeneic organ transplantation. This study aims to elucidate the immune-related functional mechanisms of exosomes (Exos) derived from bone marrow-derived mesenchymal stem cells (BMSCs) overexpressing IDO1 in the context of allogeneic heart transplantation (HTx) rejection. A rat model of allogeneic HTx was established. Exos were extracted after transfection with oe-IDO1 and oe-NC from rat BMSCs. Exos were administered via the caudal vein for treatment. The survival of rats was analyzed, and reverse transcription qualitative PCR (RT-qPCR) and immunohistochemistry (IHC) were employed to detect the expression of related genes. Histopathological examination was conducted using hematoxylin and eosin (HE) staining, and flow cytometry was utilized to analyze T-cell apoptosis. Proteomics and RNA-seq analyses were performed on Exos. The data were subjected to functional enrichment analysis using the R language. A protein interaction network was constructed using the STRING database, and miRWalk, TargetScan, and miRDB databases predicted the target genes, differentially expressed miRNAs, and transcription factors (TFs). Exos from BMSCs overexpressing IDO1 prolonged the survival time of rats undergoing allogeneic HTx. These Exos reduced inflammatory cell infiltration, mitigated myocardial damage, induced CD4 T-cell apoptosis, and alleviated transplantation rejection. The correlation between Exos from BMSCs overexpressing IDO1 and immune regulation was profound. Notably, 13 immune-related differential proteins (Anxa1, Anxa2, C3, Ctsb, Hp, Il1rap, Ntn1, Ptx3, Thbs1, Hspa1b, Vegfc, Dcn, and Ptpn11) and 10 significantly different miRNAs were identified. Finally, six key immune proteins related to IDO1 were identified through common enrichment pathways, including Thbs1, Dcn, Ptpn11, Hspa1b, Il1rap, and Vegfc. Thirteen TFs of IDO1-related key miRNAs were obtained, and a TF-miRNA-mRNA-proteins regulatory network was constructed. Exosome miRNA derived from BMSCs overexpressing IDO1 may influence T-cell activation and regulate HTx rejection by interacting with mRNA.


Assuntos
Exossomos , Transplante de Células-Tronco Hematopoéticas , MicroRNAs , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Rejeição de Enxerto/genética , RNA Mensageiro/metabolismo
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 470-475, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660854

RESUMO

OBJECTIVE: To investigate the influence of novel CRM1 inhibitor KPT-330 on the autophagy of mantle cell lymphoma (MCL) cells, and effect of KPT-330 on the prolifiration of MCL cells in the presence or absence of autophagy inhibitor. METHODS: CCK-8 assay was used to detect the effect of KPT-330 on MCL cell lines Z-138, Jeko-1, Granta-519, Rec-1. The effect of KPT-330 on autophagy features were determined by detecting acidic vesicular organelles (AVO) by MDC staining under fluorescence microscope and detecting protein expression of LC3B-II assessed by Western blot. Further combined application of lysosomal inhibitor Chloroquine (CQ) was used to observe its effect on the increase of LC3B-Ⅱ caused by KPT-330. CalcuSyn 2.0 software was used to detected the Combination index (CI) of KPT-330 combined with CQ. RESULTS: The proliferation of MCL cell lines (Z-138, Jeko-1, Grant-519, Rec-1) could be inhibited by KPT-330 in a dose-dependent manner (r =0.930, 0.946, 0.691, 0.968 respectively). The number of acidic vesicular organelles (AVO) and the expression of LC3B-II were increased in KPT-330 treated Jeko-1 and Granta-519 cells in a dose-dependent manner (r Jeko-1=0.993, r Granta-519=0.971). LC3B-II protein amounts still increased upon KPT-330 treatment with the existence of lysosomal inhibitor CQ in Jeko-1 and Granta-519 cells, which was higher than CQ or KPT-330 single drug group. The combination of KPT-330 and CQ produced the synergistic effects on cells proliferation inhibition with CalcuSyn 2.0 analysis. CONCLUSION: KPT-330 can inhibit MCL cell proliferation and induce autophagy. KPT-330 combined with autophagy inhibitor CQ could produce synergistic anti MCL effects, providing experimental basis for clinical combination therapy.


Assuntos
Autofagia , Proliferação de Células , Linfoma de Célula do Manto , Linfoma de Célula do Manto/tratamento farmacológico , Humanos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia
6.
Arch Toxicol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662237

RESUMO

Tobacco carcinogens metabolism-related genes (TCMGs) could generate reactive metabolites of tobacco carcinogens, which subsequently contributed to multiple diseases. However, the association between genetic variants in TCMGs and bladder cancer susceptibility remains unclear. In this study, we derived TCMGs from metabolic pathways of polycyclic aromatic hydrocarbons and tobacco-specific nitrosamines, and then explored genetic associations between TCMGs and bladder cancer risk in two populations: a Chinese population of 580 cases and 1101 controls, and a European population of 5930 cases and 5468 controls, along with interaction and joint analyses. Expression patterns of TCMGs were sourced from Nanjing Bladder Cancer (NJBC) study and publicly available datasets. Among 43 TCMGs, we observed that rs7087341 T > A in AKR1C2 was associated with a reduced risk of bladder cancer in the Chinese population [odds ratio (OR) = 0.84, 95% confidence interval (CI) = 0.72-0.97, P = 1.86 × 10-2]. Notably, AKR1C2 rs7087341 showed an interaction effect with cigarette smoking on bladder cancer risk (Pinteraction = 5.04 × 10-3), with smokers carrying the T allele increasing the risk up to an OR of 3.96 (Ptrend < 0.001). Genetically, rs7087341 showed an allele-specific transcriptional regulation as located at DNA-sensitive regions of AKR1C2 highlighted by histone markers. Mechanistically, rs7087341 A allele decreased AKR1C2 expression, which was highly expressed in bladder tumors that enhanced metabolism of tobacco carcinogens, and thereby increased DNA adducts and reactive oxygen species formation during bladder tumorigenesis. These findings provided new insights into the genetic mechanisms underlying bladder cancer.

7.
World J Gastroenterol ; 30(9): 1224-1236, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577190

RESUMO

BACKGROUND: As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM: To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS: The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS: A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Oncogenes , Bibliometria
8.
Zhongguo Zhong Yao Za Zhi ; 49(4): 858-867, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621893

RESUMO

Benign prostatic hyperplasia(BPH) is a common disease of the male urinary system, and its incidence rate in China is increasing. However, the mechanism underlying the pathogenesis of BPH remains unclear. Some studies demonstrated that the incidence of BPH was related to the change in the levels of steroid hormones. Too high content of dihydrotestosterone(DHT) in the body may cause BPH and other related diseases. Testosterone(T) is converted to DHT by 5α-reductase(SRD5A). By inhibiting the activity of this enzyme, the production of DHT can be reduced, and then the incidence of BPH can be lowered. Therefore, it has drawn great attention to screen and discover safer and more effective 5α-reductase inhibitors from natural medicines to treat prostatic hyperplasia without affecting the physiological function of men. This review summarizes the characteristics and tissue distribution of 5α-reductase, the discovery of 5α-reductase inhibitors in traditional Chinese medicine and natural medicines, 5α-reductase inhibitors commonly used in clinical practice and their side effects, as well as the animal models of prostatic hyperplasia and common detection indicators, aiming to provide a reference for more in-depth understanding and research about BPH and development of drugs.


Assuntos
Inibidores de 5-alfa Redutase , Hiperplasia Prostática , Animais , Humanos , Masculino , Inibidores de 5-alfa Redutase/uso terapêutico , Colestenona 5 alfa-Redutase , Di-Hidrotestosterona , Hiperplasia Prostática/tratamento farmacológico , Testosterona
9.
Nanoscale ; 16(16): 8036-8045, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38546764

RESUMO

Iron phthalocyanine (FePc) has attracted widespread attention for its tunable electronic structure. However, the Fe-N sites suffer from undesirable oxygen reduction activity due to the symmetric geometries. A suitable substrate was thus needed to induce electron redistribution around Fe-N to improve the activity. Herein, ultrathin nitrogen-doped carbon nanosheets (N-CNSs) were prepared by a simple high temperature pyrolysis. Then iron phthalocyanine was loaded on the ultrathin nitrogen-doped carbon nanosheets (FePc@N-CNSs) by a low-cost and simple solution method. This composite catalyst shows an excellent ORR activity with a half potential of 0.88 V, an onset potential of 0.99 V and durability superior to commercial Pt/C. When used as an air cathode catalyst for rechargeable zinc-air batteries, FePc@N-CNS modified batteries outperform Pt/C + RuO2 modified batteries with higher power density and superior constant current charge-discharge cycling stability of 37 hours. The regulated electronic structure of FePc by the N-CNS substrate was revealed further by DFT calculations, which explained the enhanced adsorption of the active center to the intermediates and the increased ORR performance.

10.
Toxicology ; 504: 153782, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493947

RESUMO

Tobacco carcinogens are recognized as critical hazard factors for bladder tumorigenesis, affecting the prognosis of patients through aromatic amines components. However, the specific function of tobacco carcinogens and systematic assessment models in the prognosis of bladder cancer remains poorly elucidated. We retrieved bladder cancer specific tobacco carcinogens-related genes from Comparative Toxicogenomic Database, our Nanjing Bladder Cancer cohort and TCGA database. Gene×Gene interaction method was utilized to establish a prognostic signature. Integrative assessment of immunogenomics, tumor microenvironments and single-cell RNA-sequencing were performed to illustrate the internal relations of key events from different levels. Finally, we comprehensively identified 33 essential tobacco carcinogens-related genes to construct a novel prognostic signature, and found that high-risk patients were characterized by significantly worse overall survival (HR=2.25; Plog-rank < 0.01). Single-cell RNA-sequencing and multi-omics analysis demonstrated that cancer-associated fibroblasts mediated the crosstalk between epithelial-mesenchymal transition progression and immune evasion. Moreover, an adverse outcome pathway framework was established to facilitate our understanding to the tobacco carcinogens-triggered bladder tumorigenesis. Our study systematically provided immune microenvironmental alternations for smoking-induced adverse survival outcomes in bladder cancer. These findings facilitated the integrative multi-omics insights into risk assessment and toxic mechanisms of tobacco carcinogens.


Assuntos
Fibroblastos Associados a Câncer , Transição Epitelial-Mesenquimal , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinógenos/toxicidade , Regulação Neoplásica da Expressão Gênica , Evasão da Resposta Imune , Multiômica , Prognóstico , Análise de Célula Única , Fumar/efeitos adversos , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia
12.
Mol Biol Rep ; 51(1): 269, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302766

RESUMO

Macrophages are critical components of the immune system and play vital roles in pathogen defense, immune regulation, and tissue repair. These cells exhibit different polarization states depending on environmental signals, and the M1/M2 paradigm is a useful tool for comprehending these states. This review article comprehensively presents the underlying mechanisms of M1 and M2 macrophage polarization and examines their polarization in various skin diseases. Additionally, this paper discusses therapeutic strategies that target M1 and M2 macrophage polarization in skin diseases. A more profound understanding of macrophage polarization in skin diseases could provide valuable insights for the development of innovative therapeutic strategies.


Assuntos
Ativação de Macrófagos , Macrófagos
13.
World J Gastroenterol ; 30(5): 471-484, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38414587

RESUMO

BACKGROUND: Primary sclerosing cholangitis (PSC) is characterized by chronic inflammation and it predisposes to cholangiocarcinoma due to lack of effective treatment options. Recombinant adeno-associated virus (rAAV) provides a promising platform for gene therapy on such kinds of diseases. A microRNA (miRNA) let-7a has been reported to be associated with the progress of PSC but the potential therapeutic implication of inhibition of let-7a on PSC has not been evaluated. AIM: To investigate the therapeutic effects of inhibition of a miRNA let-7a transferred by recombinant adeno-associated virus 8 (rAAV8) on a xenobiotic-induced mouse model of sclerosing cholangitis. METHODS: A xenobiotic-induced mouse model of sclerosing cholangitis was induced by 0.1% 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine (DDC) feeding for 2 wk or 6 wk. A single dose of rAAV8-mediated anti-let-7a-5p sponges or scramble control was injected in vivo into mice onset of DDC feeding. Upon sacrifice, the liver and the serum were collected from each mouse. The hepatobiliary injuries, hepatic inflammation and fibrosis were evaluated. The targets of let-7a-5p and downstream molecule NF-κB were detected using Western blot. RESULTS: rAAV8-mediated anti-let-7a-5p sponges can depress the expression of let-7a-5p in mice after DDC feeding for 2 wk or 6 wk. The reduced expression of let-7a-5p can alleviate hepato-biliary injuries indicated by serum markers, and prevent the proliferation of cholangiocytes and biliary fibrosis. Furthermore, inhibition of let-7a mediated by rAAV8 can increase the expression of potential target molecules such as suppressor of cytokine signaling 1 and Dectin1, which consequently inhibit of NF-κB-mediated hepatic inflammation. CONCLUSION: Our study demonstrates that a rAAV8 vector designed for liver-specific inhibition of let-7a-5p can potently ameliorate symptoms in a xenobiotic-induced mouse model of sclerosing cholangitis, which provides a possible clinical translation of PSC of human.


Assuntos
Colangite Esclerosante , MicroRNAs , Humanos , Camundongos , Animais , Colangite Esclerosante/induzido quimicamente , Colangite Esclerosante/genética , Colangite Esclerosante/terapia , MicroRNAs/genética , Dependovirus/genética , Cirrose Hepática/patologia , NF-kappa B , Xenobióticos/efeitos adversos , Fibrose , Modelos Animais de Doenças , Inflamação
14.
Environ Toxicol ; 39(5): 2782-2793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270278

RESUMO

Cigarette smoking was known to accelerate the occurrence and development of bladder cancer by regulating RNA modification. However, the association between the combination of cigarette smoking and RNA modification-related single nucleotide polymorphisms (RNAm-SNPs) and bladder cancer risk remains unclear. In this study, 1681 participants, including 580 cases and 1101 controls, were recruited for genetic association analysis. In total, 1 287 990 RNAm-SNPs involving nine RNA modifications (m6A, m1A, m6Am, 2'-O-Me, m5C, m7G, A-to-I, m5U, and pseudouridine modification) were obtained from the RMVar database. The interactive effect of cigarette smoking and RNAm-SNPs on bladder cancer risk was assessed through joint analysis. The susceptibility analysis revealed that 89 RNAm-SNPs involving m6A, m1A, and A-to-I modifications were associated with bladder cancer risk. Among them, m6A-related rs2273058 in CRNKL1 was associated with bladder cancer risk (odds ratios (OR) = 1.35, padj = 1.78 × 10-4), and CRNKL1 expression was increased in bladder cancer patients (p = 0.035). Cigarette smoking combined with the A allele of rs2273058 increased bladder cancer risk compared with nonsmokers with the G allele of rs2273058 (OR = 2.40, padj = 3.11 × 10-9). Mechanistically, the A allele of rs2273058 endowed CRNKL1 with an additional m6A motif, facilitating recognition by m6A reader IGF2BP1, thereby promoting CRNKL1 expression under cigarette smoking (r = 0.142, p = 0.017). Moreover, elevated CRNKL1 expression may accelerate cell cycle and proliferation, thereby increasing bladder cancer risk. In summary, our study demonstrated that cigarette smoking combined with RNAm-SNPs contributes to bladder cancer risk, which provides a potential target for bladder cancer prevention.


Assuntos
Fumar Cigarros , Neoplasias da Bexiga Urinária , Humanos , Fumar Cigarros/genética , Fatores de Risco , Neoplasias da Bexiga Urinária/genética , Polimorfismo de Nucleotídeo Único , Metilação , RNA , Estudos de Casos e Controles , Proteínas Nucleares/genética
15.
Sci Rep ; 14(1): 2244, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278865

RESUMO

We investigated data-driven and hypothesis-driven dietary patterns and their association to plasma metabolite profiles and subsequent colorectal cancer (CRC) risk in 680 CRC cases and individually matched controls. Dietary patterns were identified from combined exploratory/confirmatory factor analysis. We assessed association to LC-MS metabolic profiles by random forest regression and to CRC risk by multivariable conditional logistic regression. Principal component analysis was used on metabolite features selected to reflect dietary exposures. Component scores were associated to CRC risk and dietary exposures using partial Spearman correlation. We identified 12 data-driven dietary patterns, of which a breakfast food pattern showed an inverse association with CRC risk (OR per standard deviation increase 0.89, 95% CI 0.80-1.00, p = 0.04). This pattern was also inversely associated with risk of distal colon cancer (0.75, 0.61-0.96, p = 0.01) and was more pronounced in women (0.69, 0.49-0.96, p = 0.03). Associations between meat, fast-food, fruit soup/rice patterns and CRC risk were modified by tumor location in women. Alcohol as well as fruit and vegetables associated with metabolite profiles (Q2 0.22 and 0.26, respectively). One metabolite reflecting alcohol intake associated with increased CRC risk, whereas three metabolites reflecting fiber, wholegrain, and fruit and vegetables associated with decreased CRC risk.


Assuntos
Neoplasias Colorretais , Dieta , Humanos , Feminino , Fatores de Risco , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Padrões Dietéticos , Inquéritos e Questionários , Verduras
16.
Cell Mol Immunol ; 21(3): 213-226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177245

RESUMO

Despite the tremendous progress of chimeric antigen receptor T (CAR-T) cell therapy in hematological malignancies, their application in solid tumors has been limited largely due to T-cell exhaustion in the tumor microenvironment (TME) and systemic toxicity caused by excessive cytokine release. As a key regulator of the immunosuppressive TME, TGF-ß promotes cytokine synthesis via the NF-κB pathway. Here, we coexpressed SMAD7, a suppressor of TGF-ß signaling, with a HER2-targeted CAR in engineered T cells. These novel CAR-T cells displayed high cytolytic efficacy and were resistant to TGF-ß-triggered exhaustion, which enabled sustained tumoricidal capacity after continuous antigen exposure. Moreover, SMAD7 substantially reduced the production of inflammatory cytokines by antigen-primed CAR-T cells. Mechanistically, SMAD7 downregulated TGF-ß receptor I and abrogated the interplay between the TGF-ß and NF-κB pathways in CAR-T cells. As a result, these CAR-T cells persistently inhibited tumor growth and promoted the survival of tumor-challenged mice regardless of the hostile tumor microenvironment caused by a high concentration of TGF-ß. SMAD7 coexpression also enhanced CAR-T-cell infiltration and persistent activation in patient-derived tumor organoids. Therefore, our study demonstrated the feasibility of SMAD7 coexpression as a novel approach to improve the efficacy and safety of CAR-T-cell therapy for solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Citocinas/metabolismo , Imunoterapia Adotiva , Neoplasias/terapia , NF-kappa B/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Linfócitos T , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
17.
Adv Sci (Weinh) ; 11(12): e2305891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263860

RESUMO

PDL1 blockade therapy holds great promise in cancer immunotherapy. Ultrasound imaging of PDL1 expression in the tumor is of great importance in predicting the therapeutic efficacy. As a proof-of-concept study, a novel ultrasound contrast agent has been innovated here to image and block PDL1 in the tumor tissue. Briefly, extracellular vesicles (EVs) are engineered to display truncated PD1 (tPD1) on the surface to bind PDL1 with high affinity by fusion to EV-abundant transmembrane protein PTGFRN. The engineered EVs are then encapsulated with Ca(HCO3)2 via electroporation and designated as Gp-EVtPD1, which would recognize PDL1 highly expressed cells and produce gas in the endosomes and lysosomes. On the one hand, the echogenic signal intensity correlates well with the PDL1 expression and immune response inhibition in the tumor. On the other hand, during the trajectory of Gp-EVtPD1 in the recipient cells, tPD1 on the EV binds PDL1 and triggers the PDL1 endocytosis and degradation in endosomes/lysosomes in a sequential manner, and thus boosts the anti-tumor immunity of cytotoxic T cells. In summary, Gp-EVtPD1 serves as a novel ultrasound contrast agent and blocker of PDL1, which might be of great advantage in imaging PDL1 expression and conquering immune checkpoint blocker resistance.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Meios de Contraste , Imunoterapia/métodos , Ultrassonografia
18.
Food Chem ; 443: 138547, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271897

RESUMO

In the present study, we hypothesised that Trichosanthes kirilowii seed protein isolate (TPI) obtained by different extraction methods have distinct structure, functional attributes and volatile profiles. Alkaline-extracted isolate (AE-TPI) exhibited lower protein content and a darker colour than the other two isolates because more polyphenols and pigments were coextracted. Salt-extracted isolate (SE-TPI) and AE-TPI had higher in vitro protein digestibility than reverse micelle-extracted isolate (RME-TPI) due to higher degrees of denaturation, which enabled them to be more susceptible to proteolysis. The SE-TPI gel resulted in a stronger gel network and greater hardness than the other two isolate gels. In the volatile profile, SE-TPI (22) yielded the largest number of volatile compounds, followed by AE-TPI (20) and RME-TPI (15). The current results indicated that the structure, functional properties and volatile profiles of TPI are largely influenced by the extraction technique.


Assuntos
Trichosanthes , Trichosanthes/química , Sementes/química
19.
BMC Complement Med Ther ; 24(1): 15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169375

RESUMO

AIM OF THE STUDY: Cardiovascular disease (CVD) seriously endangers human health and is characterized by high mortality and disability. The effectiveness of Dracocephalum moldavica L. in the treatment of CVD has been proven by clinical practice. However, the mechanism by which DML can treat CVD has not been systematically determined. MATERIALS AND METHODS: The active compounds in DML were screened by literature mining and pharmacokinetic analysis. Cytoscape software was used to construct the target-disease interaction network of DML in the treatment of CVD. Gene ontology and signalling pathway enrichment analyses were performed. The key target pathway network of DML compounds was constructed and verified by pharmacological experiments in vitro. A hydrogen glucose deprivation/reoxygenation model was established in H9c2 cells using hypoxia and glucose deprivation for 9 h combined with reoxygenation for 2 h. The model simulated myocardial ischaemic reperfusion injury to investigate the effects of total flavonoids of Cymbidium on cell viability, myocardial injury markers, oxidative stress levels, and reactive oxygen radical levels. Western blot analysis was used to examine NOX-4, Bcl-2/Bax, and PGC-1α protein expression. RESULTS: Twenty-seven active components were screened, and 59 potential drug targets for the treatment of CVD were obtained. Through the compound-target interaction network and the target-disease interaction network, the key targets and key signalling pathways, such as NOX-4, Bcl-2/Bax and PGC-1α, were obtained. TFDM significantly decreased LDH and MDA levels and the production of ROS and increased SOD activity levels in the context of OGD/R injury. Further studies indicated that NOX-4 and Bax protein levels and the p-P38 MAPK/P38 MAPK andp-Erk1/2/Erk1/2 ratios were suppressed by TFDM. The protein expression of Bcl-2 and PGC-1α was increased by TFDM. CONCLUSIONS: Our results showed that DML had multicomponent, multitarget and multichannel characteristics in the treatment of CVD. The mechanism may be associated with the following signalling pathways: 1) the NOX-4/ROS/p38 MAPK signalling pathway, which inhibits inflammation and reactive oxygen species (ROS) production, and 2) the Bcl-2/Bax and AMPK/SIRT1/PGC-1α signalling pathways, which inhibit apoptosis.


Assuntos
Doenças Cardiovasculares , Flavonoides , Humanos , Flavonoides/farmacologia , Proteína X Associada a bcl-2 , Doenças Cardiovasculares/tratamento farmacológico , Espécies Reativas de Oxigênio , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-bcl-2 , Glucose , Proteínas Quinases p38 Ativadas por Mitógeno
20.
Cancer Sci ; 115(2): 334-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071753

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a poor prognosis, which is lethal in approximately 90% of cases despite advanced standard therapies. A typical feature of PDAC is the immunosuppressive tumor microenvironment with multiple immunosuppressive factors including neurotransmitters. Recently, neuromedin U (NMU), a highly conserved neuropeptide with many physiological functions, has attracted attention for its roles in tumorigenesis and metastasis in several types of cancers. However, whether NMU affects PDAC progression remains unclear. In this study, using an orthotopic mouse model of PDAC in combination with bioinformatics analysis, we found that NMU was upregulated in tumor tissues from the patients with PDAC and positively correlated with a poor prognosis of the disease. Interestingly, knockout of the Nmu gene in mice enhanced the anti-tumor functions of tumor-infiltrating CD8+ T cells in an NMU receptor 1-dependent manner. Additionally, NMU promoted the glycolytic metabolism of mouse PDAC tumors. The activities of pyruvate kinase (PK) and lactate dehydrogenase (LDH), pivotal enzymes involved in the regulation of lactate production, were markedly reduced in tumor tissues from NMU-knockout mice. In vitro the presence of LDHA inhibitor can reduce the production of lactic acid stimulated by NMU, which can increase the anti-tumor activity of CD8+ T cells. Moreover, treatment of the pancreatic cancer cells with a phosphoinositide 3-kinase (PI3K) inhibitor diminished NMU-induced lactate production and the activities of PK and LDH, suggesting that NMU might regulate glycolysis via the PI3K/AKT pathway.


Assuntos
Carcinoma Ductal Pancreático , Neuropeptídeos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Linfócitos T CD8-Positivos/metabolismo , Glicólise , Lactatos , Neuropeptídeos/genética , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA