Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 931293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966871

RESUMO

Adenosine triphosphate (ATP) released from injured or dying cells is a potent pro-inflammatory "danger" signal. Alkaline phosphatase (AP), an endogenous enzyme that de-phosphorylates extracellular ATP, likely plays an anti-inflammatory role in immune responses. We hypothesized that ilofotase alfa, a human recombinant AP, protects kidneys from ischemia-reperfusion injury (IRI), a model of acute kidney injury (AKI), by metabolizing extracellular ATP to adenosine, which is known to activate adenosine receptors. Ilofotase alfa (iv) with or without ZM241,385 (sc), a selective adenosine A2A receptor (A2AR) antagonist, was administered 1 h before bilateral IRI in WT, A2AR KO (Adora2a-/- ) or CD73-/- mice. In additional studies recombinant alkaline phosphatase was given after IRI. In an AKI-on-chronic kidney disease (CKD) ischemic rat model, ilofotase alfa was given after the three instances of IRI and rats were followed for 56 days. Ilofotase alfa in a dose dependent manner decreased IRI in WT mice, an effect prevented by ZM241,385 and partially prevented in Adora2a-/- mice. Enzymatically inactive ilofotase alfa was not protective. Ilofotase alfa rescued CD73-/- mice, which lack a 5'-ectonucleotidase that dephosphorylates AMP to adenosine; ZM241,385 inhibited that protection. In both rats and mice ilofotase alfa ameliorated IRI when administered after injury, thus providing relevance for therapeutic dosing of ilofotase alfa following established AKI. In an AKI-on-CKD ischemic rat model, ilofotase alfa given after the third instance of IRI reduced injury. These results suggest that ilofotase alfa promotes production of adenosine from liberated ATP in injured kidney tissue, thereby amplifying endogenous mechanisms that can reverse tissue injury, in part through A2AR-and non-A2AR-dependent signaling pathways.

2.
Mol Brain ; 5: 28, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22892315

RESUMO

BACKGROUND: Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ) stretch within Huntingtin (htt), the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR) in modulating HD mouse model pathogenesis is currently unknown. RESULTS: We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh) encoding N-terminal hemaglutinin (HA) or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt) and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt). Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q) htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt's polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis. CONCLUSION: In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.


Assuntos
Alelos , Epitopos/química , Doença de Huntington/metabolismo , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Distribuição de Qui-Quadrado , Cruzamentos Genéticos , Modelos Animais de Doenças , Éxons/genética , Feminino , Gliose/metabolismo , Gliose/patologia , Hemizigoto , Heterozigoto , Humanos , Proteína Huntingtina , Doença de Huntington/patologia , Lipofuscina/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Ligação Proteica , Expansão das Repetições de Trinucleotídeos/genética
3.
PLoS Genet ; 6(2): e1000838, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20140187

RESUMO

Expansion of a stretch of polyglutamine in huntingtin (htt), the protein product of the IT15 gene, causes Huntington's disease (HD). Previous investigations into the role of the polyglutamine stretch (polyQ) in htt function have suggested that its length may modulate a normal htt function involved in regulating energy homeostasis. Here we show that expression of full-length htt lacking its polyglutamine stretch (DeltaQ-htt) in a knockin mouse model for HD (Hdh(140Q/DeltaQ)), reduces significantly neuropil mutant htt aggregates, ameliorates motor/behavioral deficits, and extends lifespan in comparison to the HD model mice (Hdh(140Q/+)). The rescue of HD model phenotypes is accompanied by the normalization of lipofuscin levels in the brain and an increase in the steady-state levels of the mammalian autophagy marker microtubule-associate protein 1 light chain 3-II (LC3-II). We also find that DeltaQ-htt expression in vitro increases autophagosome synthesis and stimulates the Atg5-dependent clearance of truncated N-terminal htt aggregates. DeltaQ-htt's effect on autophagy most likely represents a gain-of-function, as overexpression of full-length wild-type htt in vitro does not increase autophagosome synthesis. Moreover, Hdh(DeltaQ/DeltaQ) mice live significantly longer than wild-type mice, suggesting that autophagy upregulation may be beneficial both in diseases caused by toxic intracellular aggregate-prone proteins and also as a lifespan extender in normal mammals.


Assuntos
Autofagia , Longevidade , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Proteínas Nucleares/genética , Peptídeos/genética , Deleção de Sequência/genética , Animais , Proteína 5 Relacionada à Autofagia , Comportamento Animal , Linhagem Celular , Modelos Animais de Doenças , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipofuscina/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora , Neostriado/metabolismo , Neostriado/patologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurópilo/metabolismo , Neurópilo/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fagossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Transdução de Sinais , Serina-Treonina Quinases TOR
4.
J Biol Chem ; 281(30): 21250-21255, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16723357

RESUMO

Glutamate transporters (excitatory amino acid transporters, EAAT) play an important role in maintaining extracellular glutamate homeostasis and regulating glutamate neurotransmission. However, very few studies have investigated the regulation of EAAT expression. A binding sequence for the regulatory factor X1 (RFX1) exists in the promoter region of the gene encoding for EAAT3, a neuronal EAAT, but not in the promoter regions of the genes encoding for EAAT1 and EAAT2, two glial EAATs. RFX proteins are transcription factors binding to X-boxes of DNA sequences. Although RFX proteins are necessary for the normal function of sensory neurons in Caenorhabditis elegans, their roles in the mammalian brain are not known. We showed that RFX1 increased EAAT3 expression and activity in C6 glioma cells. RFX1 binding complexes were found in the nuclear extracts of C6 cells. The activity of EAAT3 promoter as measured by luciferase reporter activity was increased by RFX1 in C6 cells and the neuron-like SH-SY5Y cells. However, RFX1 did not change the expression of EAAT2 proteins in the NRK52E cells. RFX1 proteins were expressed in the neurons of rat brain. A high expression level of RFX1 proteins was found in the neurons of cerebral cortex and Purkinje cells. Knockdown of the RFX1 expression by RFX1 antisense oligonucleotides decreased EAAT3 expression in rat cortical neurons in culture. These results suggest that RFX1 enhances the activity of EAAT3 promoter to increase the expression of EAAT3 proteins. This study provides initial evidence for the regulation of gene expression in the nervous cells by RFX1.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Transportador 3 de Aminoácido Excitatório/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular Tumoral , Córtex Cerebral/embriologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Neurônios/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição de Fator Regulador X , Fator Regulador X1 , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Transfecção
5.
Brain Res ; 1054(2): 143-51, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16081051

RESUMO

A brain slice model was used to test the hypothesis that preconditioning with isoflurane, a commonly used volatile anesthetic in clinical practice, reduces neuronal injury caused by overstimulation of glutamate receptors. Glutamate receptors were stimulated by various concentrations of glutamate for 20 min, N-methyl-d-aspartate (NMDA) for 15 min or alpha-amino-3-hydroxy-5-methyl-4-isoxazol propionic acid (AMPA) for 15 min. Morphology of Purkinje neurons in the cerebellar slices of adult male Sprague-Dawley rats was evaluated 5 h after the agonist stimulation. Glutamate, NMDA and AMPA induced a dose-dependent decrease in the percentage of morphologically normal Purkinje neurons. The concentration to induce the maximal neurotoxic effect was 300 microM for glutamate, 300 microM for NMDA and 30 microM for AMPA. Isoflurane preconditioning (2% isoflurane for 30 min and then a 15-min rest period before the agonist stimulation) significantly reduced the neurotoxicity induced by 300 microM glutamate, 300 microM NMDA or 30 microM AMPA. Isoflurane preconditioning-induced protection against glutamate neurotoxicity was abolished by two protein kinase C (PKC) inhibitors, calphostin C (0.5 microM) and chelerythrine (5 microM), or a nitric oxide synthase (NOS) inhibitor, l-nitro(G)-arginine methyl ester (l-NAME, 1.5 mM), but was not affected by an adenosine A1 receptor inhibitor, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 300 nM), or a Gi protein inhibitor, pertussis toxin (PTX, 200 ng/ml). Isoflurane preconditioning-induced protection against NMDA neurotoxicity was also abolished by calphostin C, chelerythrine or l-NAME. Thus, isoflurane preconditioning reduced glutamate receptor overstimulation-induced neuronal injury/death. This neuroprotection may be PKC- and NOS-dependent.


Assuntos
Cerebelo/citologia , Isoflurano/farmacologia , Células de Purkinje/efeitos dos fármacos , Receptores de Glutamato/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Anestésicos Inalatórios/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/toxicidade , Técnicas In Vitro , Masculino , N-Metilaspartato/farmacologia , Toxina Pertussis/farmacologia , Células de Purkinje/fisiologia , Ratos , Ratos Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
6.
Anesthesiology ; 100(3): 562-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15108969

RESUMO

BACKGROUND: Morphine pretreatment via activation of delta1-opioid receptors induces cardioprotection. In this study, the authors determined whether morphine preconditioning induces ischemic tolerance in neurons. METHODS: Cerebellar brain slices from adult Sprague-Dawley rats were incubated with morphine at 0.1-10 microM in the presence or absence of various antagonists for 30 min. They were then kept in morphine- and antagonist-free buffer for 30 min before they were subjected to simulated ischemia (oxygen-glucose deprivation) for 20 min. After being recovered in oxygenated artificial cerebrospinal fluid for 5 h, they were fixed for morphologic examination to determine the percentage of undamaged Purkinje cells. RESULTS: The survival rate of Purkinje cells was significantly higher in slices preconditioned with morphine (> or = 0.3 microM) before the oxygen-glucose deprivation (57 +/- 4% at 0.3 microM morphine) than that of the oxygen-glucose deprivation alone (39 +/- 3%, P < 0.05). This morphine preconditioning-induced neuroprotection was abolished by naloxone, a non-type-selective opioid receptor antagonist, by naltrindole, a selective delta-opioid receptor antagonist, or by 7-benzylidenenaltrexone, a selective delta1-opioid receptor antagonist. However, the effects were not blocked by the mu-, kappa-, or delta2-opioid receptor antagonists, beta-funaltrexamine, nor-binaltorphimine, or naltriben, respectively. Morphine preconditioning-induced neuroprotection was partially blocked by the selective mitochondrial adenosine triphosphate-sensitive potassium channel antagonist, 5-hydroxydecanoate, or the mitochondrial electron transport inhibitor, myxothiazol. None of the inhibitors used in this study alone affected the simulated ischemia-induced neuronal death. CONCLUSIONS: These data suggest that morphine preconditioning is neuroprotective. This neuroprotection may be delta1-opioid receptor dependent and may involve mitochondrial adenosine triphosphate-sensitive potassium channel activation and free radical production. Because morphine is a commonly used analgesic, morphine preconditioning may be explored further for potential clinical use to reduce ischemic brain injury.


Assuntos
Precondicionamento Isquêmico , Morfina/farmacologia , Entorpecentes/farmacologia , Fármacos Neuroprotetores , Células de Purkinje/efeitos dos fármacos , Traumatismo por Reperfusão/patologia , Animais , Morte Celular/efeitos dos fármacos , Cerebelo/patologia , Relação Dose-Resposta a Droga , Transporte de Elétrons/efeitos dos fármacos , Glucose/fisiologia , Hipóxia/patologia , Técnicas In Vitro , Masculino , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Antagonistas de Entorpecentes/farmacologia , Canais de Potássio , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/efeitos dos fármacos
7.
Anesthesiology ; 100(2): 331-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14739808

RESUMO

BACKGROUND: A period of hypothermia before ischemia (hypothermic preconditioning) induces a delayed phase of ischemic tolerance in rat brain. However, whether hypothermic preconditioning induces an acute phase (within a few hours after the hypothermia) of ischemic tolerance remains unknown. This study was designed to determine the time window of the hypothermic preconditioning-induced acute phase of neuroprotection, which is useful information for situations during surgery with anticipated ischemic episodes, and its involved mechanisms. METHODS: Survival of Purkinje cells in rat cerebellar slices was evaluated after a 20-min oxygen-glucose deprivation (OGD, in vitro simulated ischemia) followed by a 4-h recovery. Mild hypothermia (33 degrees C) for 20 min was applied at various times before the OGD. RESULTS: The hypothermia applied immediately to 3 h before the OGD equally effectively reduced OGD-induced Purkinje cell death/injury. Glibenclamide, a selective KATP channel blocker; 8-cyclopentyl-1,3-dipropylxanthine, a selective adenosine A1 receptor antagonist; and farnesyl protein transferase inhibitor III, a selective inhibitor to reduce Ras farnesylation, abolished hypothermic preconditioning-induced neuroprotection when applied during the hypothermia. OGD increased the expression of high-mobility group I(Y) proteins, which are nuclear transcription factors to enhance the expression of putatively damaging proteins such as cyclooxygenase-2, in cerebellar slices. This increase was attenuated by hypothermic preconditioning. CONCLUSIONS: Hypothermic preconditioning induces an acute phase of neuroprotection. This neuroprotection depends on activation of the signaling molecules, adenosine A1 receptors, KATP channels, and Ras. Inhibition of putatively damaging proteins via the effects of hypothermic preconditioning on high-mobility group I(Y) expression may also be involved in hypothermic preconditioning-induced neuroprotection.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/irrigação sanguínea , Sobrevivência Celular , Hipotermia Induzida , Precondicionamento Isquêmico/métodos , Células de Purkinje/metabolismo , Animais , Glibureto/farmacologia , Masculino , Prenilação de Proteína/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA