Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 12(6): 2683-2694, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35755281

RESUMO

Remodeling the tumor microenvironment through reprogramming tumor-associated macrophages (TAMs) and increasing the immunogenicity of tumors via immunogenic cell death (ICD) have been emerging as promising anticancer immunotherapy strategies. However, the heterogeneous distribution of TAMs in tumor tissues and the heterogeneity of the tumor cells make the immune activation challenging. To overcome these dilemmas, a hybrid bacterium with tumor targeting and penetration, TAM polarization, and photothermal conversion capabilities is developed for improving antitumor immunotherapy in vivo. The hybrid bacteria (B.b@QDs) are prepared by loading Ag2S quantum dots (QDs) on the Bifidobacterium bifidum (B.b) through electrostatic interactions. The hybrid bacteria with hypoxia targeting ability can effectively accumulate and penetrate the tumor tissues, enabling the B.b to fully contact with the TAMs and mediate their polarization toward M1 phenotype to reverse the immunosuppressive tumor microenvironment. It also enables to overcome the intratumoral heterogeneity and obtain abundant tumor-associated antigens by coupling tumor penetration of the B.b with photothermal effect of the QDs, resulting in an enhanced immune effect. This strategy that combines B.b-triggered TAM polarization and QD-induced ICD achieved a remarkable inhibition of tumor growth in orthotopic breast cancer.

2.
Biomater Sci ; 9(17): 5812-5823, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34313268

RESUMO

Extracellular vesicles have shown great potential in drug delivery for clinical applications. However, some obstacles still need to be overcome before their clinical translation, including on demand release of drugs to improve the efficacy and monitoring of the drug release process to ascertain drug dosage. Herein, a pH-triggered fluorescence-switchable extracellular vesicle as a smart nanocarrier is fabricated by loading zwitterionic fluorescent carbon dots (CDs) into macrophage cell-secreted vesicles to achieve improved drug delivery and real-time monitoring of drug release. When circulating in the blood, the zwitterionic CDs loaded in the vesicles can tightly bind the chemotherapeutic drug DOX through electrostatic interactions to avoid premature drug unload. The nanocarriers have a long blood circulation half-life of 15.12 h and a high tumor accumulation of 9.88% ID/g. Meanwhile, the fluorescence of the CDs is in the "off" state due to the fluorescence inner filter effect (IFE) between the DOX and the CDs. When the nanocarriers enter the tumor cells, the low pH of the lysosome leads to charge reversal of the CDs. DOX can be quickly released through electrostatic repulsion and the fluorescence of the CDs turns "on" after the release of the drugs, thus enabling an improved drug delivery and real-time tracking of the drug release process.


Assuntos
Vesículas Extracelulares , Nanopartículas , Preparações Farmacêuticas , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Fluorescência , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA