Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 239: 113967, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761494

RESUMO

The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.


Assuntos
Poliésteres , Alicerces Teciduais , Animais , Poliésteres/química , Ratos , Alicerces Teciduais/química , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/química , Regeneração Nervosa/efeitos dos fármacos , Campos Magnéticos , Compostos Férricos/química , Compostos Férricos/farmacologia , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células PC12
2.
Int J Surg ; 110(5): 2593-2603, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748500

RESUMO

PURPOSE: The authors aimed to establish an artificial intelligence (AI)-based method for preoperative diagnosis of breast lesions from contrast enhanced mammography (CEM) and to explore its biological mechanism. MATERIALS AND METHODS: This retrospective study includes 1430 eligible patients who underwent CEM examination from June 2017 to July 2022 and were divided into a construction set (n=1101), an internal test set (n=196), and a pooled external test set (n=133). The AI model adopted RefineNet as a backbone network, and an attention sub-network, named convolutional block attention module (CBAM), was built upon the backbone for adaptive feature refinement. An XGBoost classifier was used to integrate the refined deep learning features with clinical characteristics to differentiate benign and malignant breast lesions. The authors further retrained the AI model to distinguish in situ and invasive carcinoma among breast cancer candidates. RNA-sequencing data from 12 patients were used to explore the underlying biological basis of the AI prediction. RESULTS: The AI model achieved an area under the curve of 0.932 in diagnosing benign and malignant breast lesions in the pooled external test set, better than the best-performing deep learning model, radiomics model, and radiologists. Moreover, the AI model has also achieved satisfactory results (an area under the curve from 0.788 to 0.824) for the diagnosis of in situ and invasive carcinoma in the test sets. Further, the biological basis exploration revealed that the high-risk group was associated with the pathways such as extracellular matrix organization. CONCLUSIONS: The AI model based on CEM and clinical characteristics had good predictive performance in the diagnosis of breast lesions.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Mamografia , Humanos , Feminino , Mamografia/métodos , Neoplasias da Mama/diagnóstico por imagem , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Meios de Contraste , Idoso , Aprendizado Profundo , Mama/diagnóstico por imagem , Mama/patologia
3.
Ying Yong Sheng Tai Xue Bao ; 35(3): 695-704, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646757

RESUMO

To understand the effects of different stover mulching amounts in no-tillage on soil carbon and nitrogen contents and enzyme activities, finding a stover mulching amount which can meet the requirement of soil carbon and nitrogen accumulation while maximizing economic benefits, we conducted a long-term conservation tillage field experiment since 2007 in Mollisols area of Northeast China. We analyzed soil carbon and nitrogen contents, enzyme activities and economic benefits under conventional tillage (Control, CT), no-tillage without stover mulching (NT0), no-tillage with 33% stover mulching (NT33), no-tillage with 67% stover mulching (NT67), and no-tillage with 100% stover mulching (NT100) before planting in May 2020. The results showed that compared with CT, NT0 did not affect soil organic carbon (SOC) and total nitrogen (TN) contents, but increased soil organic carbon recalcitrance and decreased the availability of dissolved organic nitrogen (DON) and ammonium nitrogen. Compared with NT0, no-tillage with stover mulching significantly increased SOC contents in 0-10 cm layer and increased with the amounts of stover. In addition, NT67 and NT100 significantly increased SOC stocks, facilitating the accumulation of soil organic matter. The effects of different stover mulching amounts on soil nitrogen content in 0-10 cm layer were different. Specifically, NT33 increased DON content and DON/TN, NT67 increased DON content, while NT100 increased TN content. Compared with CT, NT0 decreased peroxidase (POD) activity in 0-10 cm layer. Compared with NT0, NT33 increased ß-glucosidase (ßG), cellobiase (CB), 1,4-ß-N-acetylglucosaminidase (NAG), polyphenol oxidase (PPO) and POD activities, while NT67 only increased CB, NAG and POD activities in 0-10 cm soil layer, both alleviated microbial nutrient limitation. NT100 increased PPO activity in 10-20 cm layer. NT33 increased carbon conversion efficiency of stover compared with NT100, and had the highest economic benefit. In all, no-tillage with 33% stover mulching was the optimal strategy, which could promote nutrient circulation, boost stover utilization efficiency, improve the quality of Mollisols, and maximize guaranteed income.


Assuntos
Agricultura , Carbono , Ciclo do Nitrogênio , Nitrogênio , Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Solo/química , Carbono/metabolismo , Carbono/análise , Agricultura/métodos , China
4.
Bioact Mater ; 35: 401-415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38384987

RESUMO

Peripheral nerve injury (PNI) seriously affects the health and life of patients, and is an urgent clinical problem that needs to be resolved. Nerve implants prepared from various biomaterials have played a positive role in PNI, but the effect should be further improved and thus new biomaterials is urgently needed. Ovalbumin (OVA) contains a variety of bioactive components, low immunogenicity, tolerance, antimicrobial activity, non-toxicity and biodegradability, and has the ability to promote wound healing, cell growth and antimicrobial properties. However, there are few studies on the application of OVA in neural tissue engineering. In this study, OVA implants with different spatial structures (membrane, fiber, and lyophilized scaffolds) were constructed by casting, electrospinning, and freeze-drying methods, respectively. The results showed that the OVA implants had excellent physicochemical properties and were biocompatible without significant toxicity, and can promote vascularization, show good histocompatibility, without excessive inflammatory response and immunogenicity. The in vitro results showed that OVA implants could promote the proliferation and migration of Schwann cells, while the in vivo results confirmed that OVA implants (the E5/70% and 20 kV 20 µL/min groups) could effectively regulate the growth of blood vessels, reduce the inflammatory response and promote the repair of subcutaneous nerve injury. Further on, the high-throughput sequencing results showed that the OVA implants up-regulated differential expression of genes related to biological processes such as tumor necrosis factor-α (TNF-α), phosphatidylinositide 3-kinases/protein kinase B (PI3K-Akt) signaling pathway, axon guidance, cellular adhesion junctions, and nerve regeneration in Schwann cells. The present study is expected to provide new design concepts and theoretical accumulation for the development of a new generation of nerve regeneration implantable biomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA