Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 1): 132018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702002

RESUMO

Toll-like receptor 8 (TLR8), an important innate immune receptor recognizing single stranded RNA and the antiviral imidazoquinoline compounds, can activate intracellular signaling pathway and produce an inflammatory response to kill and eliminate pathogens. However, the molecular regulation mechanisms of TLR8 signaling and its anti-infection activity are not fully elucidated. Our previous transcriptome analysis of porcine TLR8 (pTLR8) signaling suggested the immune checkpoint receptor TIM-3 as the potential regulator for pTLR8. Here we investigated TIM-3 in the regulation of pTLR8 signaling and its anti-infection activity. Our results showed that porcine TIM-3 is upregulated by pTLR8 signaling and TIM-3 inhibits pTLR8 signaling activity in a negative feedback way. Accordingly, TIM-3 disturbs pTLR8 mediated anti-bacterial and anti-viral activity. Mechanistically, TIM-3 suppresses PI3K-AKT pathway by inhibiting the TLR8-PI3K p85 interaction and subsequent AKT phosphorylation which is essential for TLR8 signaling and anti-infection activity. Therefore, our study reveals new insights into innate immune TLR8 signaling and its anti-infection function.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Receptor 8 Toll-Like , Animais , Humanos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Imunidade Inata/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Receptor 8 Toll-Like/metabolismo , Células HEK293 , Células Vero
2.
Vet Microbiol ; 293: 110073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579481

RESUMO

African swine fever virus (ASFV) is a large double stranded DNA arbovirus that is highly contagious and seriously endangers domestic and wild pigs. In the past decade, African swine fever (ASF) has spread in many countries in the Caucasus, Russian Federation, Eastern Europe and Asia, causing significant losses to the pig industry. At present, there is a lack of effective vaccine and treatment for ASF. Therefore, the rapid and accurate detection is crucial for ASF prevention and control. In this study, we have developed a portable lateral flow strip (LFS) detection mediated by recombinase polymerase amplification (RPA) and CRISPR/LwCas13a, which is performed at 37 ℃ and visualized by eyes without the need for complex instruments. This RPA-LwCas13a-LFS is based on the ASFV structural protein p17 gene (D117L), with a detection sensitivity up to 2 gene copies. This method is highly specific and has no cross reactivity to 7 other pig viruses. In the detection of two batches of 100 clinical samples, the p17 (D117L) RPA-LwCas13a-LFS had 100% coincidence with conventional quantitative PCR (qPCR). These findings demonstrate the potential of this simple, rapid, sensitive, and specific ASFV detection method for on-site ASFV detection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Sistemas CRISPR-Cas , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/diagnóstico , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Proteínas Estruturais Virais/genética
3.
Animals (Basel) ; 13(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37835735

RESUMO

Porcine kobuvirus (PKV) is an enteric virus commonly detected in both diarrheic and healthy pigs. Little is known about the role of PKV in enteric diseases. In this study, an epidemiological investigation based on 324 intestinal samples collected from six provinces of China during the period of 2018 to 2022 was performed, and showed that PKV has an overall 65.43% (212/324) positive rate. Noticeably, 89.47% (17/19) of PKV and porcine epidemic diarrhea virus (PEDV) double-positive pigs were clinically diseased, while 91.71% (177/193) of PKV-positive but PEDV-negative pigs were clinically healthy, suggesting that PKV infection in itself is unlikely to cause enteric diseases. In addition, three PKV genomes were obtained from both diseased and healthy pigs. Phylogenetic analysis showed that Chinese PKV strains could be divided into three groups (SH-W-CHN-like, S-1-HUN-like and JXAT2015-like strains). All three obtained PKV genomes belong to SH-W-CHN-like strains and JSYZ1806-158 was detected as a recombinant virus. Furthermore, multiple comparisons showed that nucleotide similarities are clearly lower than amino acid similarities for PKV polyproteins. Selective pressure analysis indicated that Chinese PKV polyproteins are predominantly under negative selection. Overall, this study provided new insights into the prevalence and evolution of PKV in both diarrheic and healthy pigs in China.

4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769349

RESUMO

The cGAS-STING signaling axis can be activated by cytosolic DNA, including both non-self DNA and self DNA. This axis is used by the innate immune system to monitor invading pathogens and/or damage. Increasing evidence has suggested that the cGAS-STING pathway not only facilitates inflammatory responses and the production of type I interferons (IFN), but also activates other cellular processes, such as apoptosis. Recently, many studies have focused on analyzing the mechanisms of apoptosis induced by the cGAS-STING pathway and their consequences. This review gives a detailed account of the interplay between the cGAS-STING pathway and apoptosis. The cGAS-STING pathway can induce apoptosis through ER stress, NLRP3, NF-κB, IRF3, and IFN signals. Conversely, apoptosis can feed back to regulate the cGAS-STING pathway, suppressing it via the activation of caspases or promoting it via mitochondrial DNA (mtDNA) release. Apoptosis mediated by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, resisting infections, and limiting tumor growth.


Assuntos
Imunidade Inata , Nucleotidiltransferases , Apoptose , DNA , Imunidade Inata/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética , Proteínas de Membrana/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835527

RESUMO

The RIG-I-like receptors (RLRs) play critical roles in sensing and combating viral infections, particularly RNA virus infections. However, there is a dearth of research on livestock RLRs due to a lack of specific antibodies. In this study, we purified porcine RLR proteins and developed monoclonal antibodies (mAbs) against porcine RLR members RIG-I, MDA5 and LGP2, for which one, one and two hybridomas were obtained, respectively. The porcine RIG-I and MDA5 mAbs each targeted the regions beyond the N-terminal CARDs domains, whereas the two LGP2 mAbs were both directed to the N-terminal helicase ATP binding domain in the Western blotting. In addition, all of the porcine RLR mAbs recognized the corresponding cytoplasmic RLR proteins in the immunofluorescence and immunochemistry assays. Importantly, both RIG-I and MDA5 mAbs are porcine specific, without demonstrating any cross-reactions with the human counterparts. As for the two LGP2 mAbs, one is porcine specific, whereas another one reacts with both porcine and human LGP2. Thus, our study not only provides useful tools for porcine RLR antiviral signaling research, but also reveals the porcine species specificity, giving significant insights into porcine innate immunity and immune biology.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , Suínos , Animais , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Anticorpos Monoclonais , Especificidade da Espécie , Proteína DEAD-box 58 , Imunidade Inata
6.
J Virol ; 96(23): e0147622, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377876

RESUMO

The innate immune DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon (IFN) gene (STING) pathway exerts strong antiviral activity through downstream IFN production; however, it has been recently recognized that an IFN-independent activity of STING also plays an important role in antiviral functions. Nevertheless, the IFN-independent antiviral activity of STING is not fully understood. Here, we showed that porcine STING (pSTING) played a critical role against herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infections, and IFN-defective mutants, including pSTING pLxIS sub, S365A, and △CTT, all exhibited similar antiviral functions, compared to wild-type (WT) pSTING. Furthermore, all of these IFN-defective pSTING mutants possessed comparable autophagy activity, relative to WT pSTING, as expected. From pSTING WT, S365A, and △CTT, the residues responsible for autophagy, including L333A/R334A, Y167A/L170A, and Y245A/L248A, were mutated. Surprisingly, all of these autophagy-defective pSTING mutants still resisted the two viral infections, demonstrating that the pSTING antiviral function is independent of IFN as well as autophagy. On the other hand, all of the autophagy-defective pSTING mutants triggered cell apoptosis, which was associated with and participated in the antiviral functions. Additionally, pSTING lost its antiviral activity in TANK-binding kinase 1 (TBK1)-/- and IFN regulatory factor 3 (IRF3)-/- porcine macrophages, indicating the involvement of TBK1 and IRF3 in other STING activities such as apoptosis. Collectively, our results revealed that STING exerts both IFN- and autophagy-independent antiviral activity, and they also suggested that STING-triggered cell apoptosis resists viral infections. IMPORTANCE The IFN-independent antiviral function of the cGAS-STING pathway has attracted great attention in recent years; however, the nature of this IFN-independent antiviral function is unknown, although STING-induced autophagy has been shown to mediate the STING antiviral activity. First, we analyzed the antiviral activity through the porcine cGAS-pSTING pathway and established that pSTING signaling exerts an IFN-independent antiviral function. Second, we found that pSTING-induced IFN-independent autophagy and the antiviral activity of pSTING are independent of both IFN and autophagy. Finally, pSTING signaling activates cell apoptosis independently of IFN and autophagy, and the apoptosis is associated with antiviral activity. Our results suggest that pSTING-activated apoptosis at least partially mediates the antiviral activity or multiple pSTING-activated signals, including IFN production, nuclear factor κ light chain enhancer of activated B cells (NF-κB) expression, autophagy, and apoptosis, exert a redundant antiviral role. Thus, the work reveals a new layer of complexity in STING antiviral activity.


Assuntos
Autofagia , Interferon Tipo I , Proteínas de Membrana , Nucleotidiltransferases , Viroses , Animais , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Suínos
7.
Viruses ; 14(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146862

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) has a strict cell tropism. In addition to the primary alveolar macrophages, PRRSV is strictly cytotropic to African green monkey kidney cells, such as MARC-145 cells; however, MARC-145 cells are not infected by most NADC30-like and NADC34-like PRRSV strains. The essential scavenger receptor CD163 has been proved to mediate productive infection of PRRSV in various non-permissive cell lines. In this study, we systematically tested the porcine CD163 stably expressing 3D4/21 cells for infections with various PRRSV strains. The results showed that the porcine CD163-expressing macrophages support the infections of PRRSV2 of lineages 1, 5, and 8, as evidenced by Western blotting, immunofluorescence assay, quantitative PCR, and virus titration assay. Considering the current prevalence of NADC30-like and NADC34-like PRRSV2 of lineage 1 in China, the CD163-expressing macrophages are very useful for PRRSV research and disease management.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Antígenos CD , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Chlorocebus aethiops , Macrófagos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Receptores de Superfície Celular , Receptores Depuradores , Suínos
8.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948027

RESUMO

The cGAS-STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS-STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS-STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS-STING pathway and their consequences. The cGAS-STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS-DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress-mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.


Assuntos
DNA/imunologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Autofagia , Proteína Beclina-1/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais
9.
Viruses ; 13(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34578409

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) modulates host innate immunity which plays a key role against PRRSV infection. As a RNA virus, PRRSV is mainly sensed by innate immune RNA receptors, whereas the role of innate immune DNA sensors in the PRRSV infection has not been elucidated. Here, we investigated the roles of DNA sensing cGAS-STING pathway in both PRRSV infected Marc-145 cells and porcine macrophages. The results show that in Marc-145 cells, the stable expression of STING with or without stimulations exhibited anti-PRRSV activity, and STING knockout heightened PRRSV infection. In CD163-3D4/21 porcine macrophages, either expression of STING or stimulation of cGAS-STING signaling obviously suppressed PRRSV infection, whereas in STING knockdown macrophages, the PRRSV infection was upregulated. Our results clearly demonstrate that the host cGAS-STING signal exerts an important antiviral role in PRRSV infection.


Assuntos
Imunidade Inata , Macrófagos/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Nucleotidiltransferases/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Suínos , Replicação Viral/imunologia
10.
Front Immunol ; 12: 609543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093517

RESUMO

The RLRs play critical roles in sensing and fighting viral infections especially RNA virus infections. Despite the extensive studies on RLRs in humans and mice, there is a lack of systemic investigation of livestock animal RLRs. In this study, we characterized the porcine RLR members RIG-I, MDA5 and LGP2. Compared with their human counterparts, porcine RIG-I and MDA5 exhibited similar signaling activity to distinct dsRNA and viruses, via similar and cooperative recognitions. Porcine LGP2, without signaling activity, was found to positively regulate porcine RIG-I and MDA5 in transfected porcine alveolar macrophages (PAMs), gene knockout PAMs and PK-15 cells. Mechanistically, LGP2 interacts with RIG-I and MDA5 upon cell activation, and promotes the binding of dsRNA ligand by MDA5 as well as RIG-I. Accordingly, porcine LGP2 exerted broad antiviral functions. Intriguingly, we found that porcine LGP2 mutants with defects in ATPase and/or dsRNA binding present constitutive activity which are likely through RIG-I and MDA5. Our work provided significant insights into porcine innate immunity, species specificity and immune biology.


Assuntos
Proteína DEAD-box 58/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , RNA Helicases/metabolismo , Animais , Linhagem Celular , Proteína DEAD-box 58/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Mutação , Ligação Proteica , RNA Helicases/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Suínos
11.
Viruses ; 13(1)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374251

RESUMO

African swine fever virus (ASFV) is a highly pathogenic large DNA virus that causes African swine fever (ASF) in domestic pigs and wild boars. The p17 protein, encoded by the D117L gene, is a major transmembrane protein of the capsid and the inner lipid envelope. The aim of this study was to investigate the effects of p17 on cell proliferation and the underlying mechanisms of action. The effects of p17 on cell proliferation, cell cycle, apoptosis, oxidative stress, and endoplasmic reticulum (ER) stress have been examined in 293T, PK15, and PAM cells, respectively. The results showed that p17 reduced cell proliferation by causing cell cycle arrest at G2/M phase. Further, p17-induced oxidative stress and increased the level of intracellular reactive oxygen species (ROS). Decreasing the level of ROS partially reversed the cell cycle arrest and prevented the decrease of cell proliferation induced by p17 protein. In addition, p17-induced ER stress, and alleviating ER stress decreased the production of ROS and prevented the decrease of cell proliferation induced by p17. Taken together, this study suggests that p17 can inhibit cell proliferation through ER stress and ROS-mediated cell cycle arrest, which might implicate the involvement of p17 in ASF pathogenesis.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Pontos de Checagem do Ciclo Celular , Estresse do Retículo Endoplasmático , Espécies Reativas de Oxigênio/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Retículo Endoplasmático/metabolismo , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , L-Lactato Desidrogenase/metabolismo , Suínos
12.
ACS Synth Biol ; 9(2): 412-426, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31944664

RESUMO

F4 (K88) and F18 fimbriaed enterotoxigenic Escherichia coli (ETEC) are the predominant causes of porcine postweaning diarrhea (PWD), and vaccines are considered the most effective preventive approach against PWD. Since heterologous DNA integrated into bacterial chromosomes could be effectively expressed with stable inheritance, we chose probiotic EcNc (E. coli Nissle 1917 prototype cured of cryptic plasmids) as a delivery vector to express the heterologous F4 or both F4 and F18 fimbriae and sequentially assessed their immune efficacy of anti-F4 and F18 fimbriae in both murine and piglet models. Employing the CRISPR-cas9 technology, yjcS, pcadA, lacZ, yieN/trkD, maeB, and nth/tppB sites in the chromosome of an EcNc strain were targeted as integration sites to integrate F4 or F18 fimbriae cluster genes under the Ptet promotor to construct two recombinant integration probiotic strains (RIPSs), i.e., nth integration strain (EcNcΔnth/tppB::PtetF4) and multiple integration strain (EcNc::PtetF18x4::PtetF4x2). Expression of F4, both F4 and F18 fimbriae on the surfaces of two RIPSs, was verified with combined methods of agglutination assay, Western blot, and immunofluorescence microscopy. The recombinant strains have improved adherence to porcine intestinal epithelial cell lines. Mice and piglets immunized with the nth integration strain and multiple integration strain through gavage developed anti-F4 and both anti-F4 and anti-F18 IgG immune responses. Moreover, the serum antibodies from the immunized mice and piglets significantly inhibited the adherence of F4+ or both F4+ and F18+ ETEC wild-type strains to porcine intestinal cell lines in vitro, indicating the potential of RIPSs as promising probiotic strains plus vaccine candidates against F4+/F18+ ETEC infection.


Assuntos
Sistemas CRISPR-Cas/genética , Cromossomos Bacterianos , Escherichia coli Enterotoxigênica/genética , Adesinas de Escherichia coli/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Aderência Bacteriana , Linhagem Celular , Escherichia coli Enterotoxigênica/imunologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Feminino , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Família Multigênica , Suínos
13.
Molecules ; 24(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284444

RESUMO

Zearalenone (ZEA) interferes with the function of the male reproductive system, but its molecular mechanism has yet to be completely elucidated. Sertoli cells (SCs) are important in the male reproductive system. Silencing information regulator 1 (SIRT1) is a cell metabolism sensor and resveratrol (RSV) is an activator of SIRT1. In this study we investigated whether SIRT1 is involved in the regulation of ZEA-induced lactate metabolism disorder in SCs. The results showed that the cytotoxicity of ZEA toward SCs increased with increasing ZEA concentration. Moreover, ZEA induced a decrease in the production of lactic acid and pyruvate of SCs and inhibited the expression of glycolytic genes and lactic acid production-related proteins. ZEA also led to a decreased expression of SIRT1 in energy receptors and decreased ATP levels in SCs. However, the ZEA-induced cytotoxicity and decline in lactic acid production in SCs were alleviated by the use of RSV, which is an activator of SIRT1. In summary, ZEA decreased lactic acid production in SCs, while the treatment with an SIRT1 activator, RSV, restored the inhibition of lactic acid production in SCs and reduced cytotoxicity of ZEA toward SCs.


Assuntos
Ácido Láctico/metabolismo , Resveratrol/farmacologia , Células de Sertoli/metabolismo , Sirtuína 1/metabolismo , Zearalenona/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Ratos Wistar , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-31035709

RESUMO

Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin produced by several Gibberella and Fusarium species. Accumulating evidence has indicated that ZEA strongly stimulates cell proliferation. However the detailed molecular and cellular mechanisms of ZEA-mediated induction of cell proliferation have not yet been completely explained. The aim of this study was to detect the role of miRNAs in ZEA-mediated induction of cell proliferation. The effects of ZEA on cell proliferation were assessed using a cell counting kit assay and xCELLigence system. Micro-RNA sequencing was performed after treatment of TM3 cells with ZEA (0.01 µmol/L) for different time periods (0, 2, 6 and 18 h). Cell function and pathway analysis of the miRNA target genes were performed by Ingenuity Pathway Analysis (IPA). We found that ZEA promotes TM3 cell proliferation at low concentrations. miRNA sequenceing revealed 66 differentially expressed miRNAs in ZEA-treated cells in comparison to the untreated control ( p < 0.05). The miRNA sequencing indicated that compared to control group, there were 66 miRNAs significant change (p < 0.05) in ZEA-treated groups. IPA analysis showed that the predicated miRNAs target gene involved in cell Bio-functions including cell cycle, growth and proliferation, and in signaling pathways including MAPK and RAS-RAF-MEK-ERK pathways. Results from flow cytometry and Western Blot analysis validated the predictions that ZEA can affect cell cycle, and the MAPK signaling pathway. Taking these together, the cell proliferation induced ZEA is regulated by miRNAs. The results shed light on the molecular and cellular mechanisms for the mediation of ZEA to induce proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , MicroRNAs/metabolismo , Zearalenona/toxicidade , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Estrogênios Conjugados (USP) , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos
15.
Food Chem Toxicol ; 126: 262-276, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30825585

RESUMO

Zearalenone (ZEA), a non-steroidal estrogen mycotoxin produced by several species of Fusarium fungi, can be metabolized into many other derivatives by microorganisms, plants, animals and humans. It can affect mammalian reproductive capability by impacting the synthesis and secretion of sex hormones, including testosterone, estradiol and progesterone. This review summarizes the mechanisms in which ZEA and its derivatives disturb the synthesis and secretion of sex steroid hormones. Because of its structural analogy to estrogen, ZEA and its derivatives can exert a variety of estrogen-like effects and engage in estrogen negative feedback regulation, which can result in mediating the production of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the pituitary gland. ZEA and its derivatives can ultimately reduce the number of Leydig cells and granulosa cells by inducing oxidative stress, endoplasmic reticulum (ER) stress, cell cycle arrest, cell apoptosis, and cell regeneration delay. Additionally, they can disrupt the mitochondrial structure and influence mitochondrial functions through overproduction of reactive oxygen species (ROS) and aberrant autophagy signaling ways. Finally, ZEA and its derivatives can disturb the expressions and activities of the related steroidogenic enzymes through cross talking between membrane and nuclear estrogen receptors.


Assuntos
Hormônios Esteroides Gonadais/biossíntese , Mamíferos/fisiologia , Zearalenona/química , Zearalenona/toxicidade , Animais , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Masculino , Reprodução/efeitos dos fármacos
16.
Toxins (Basel) ; 10(10)2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274213

RESUMO

A high concentration of Zearalenone (ZEA) will perturb the differentiation of germ cells, and induce a death of germ cells, but the toxic mechanism and molecular mechanism remain unclear. The Sertoli cells (SCs) play an irreplaceable role in spermatogenesis. In order to explore the potential mechanism of ZEA male reproductive toxicity, we studied the effects of ZEA on cell proliferation, cell-cycle distribution, cell-cycle-related proteins and autophagy-related pathway the PI3K/Akt/mTOR signaling in primary cultured rats SCs, and the effects of autophagy and PI3K/AKT/m TOR signaling pathway on the SCs cell-cycle arrest induced by ZEA treated with the autophagy promoter RAPA, autophagy inhibitor CQ, and the PI3K inhibitor LY294002, respectively. The data revealed that ZEA could inhibit the proliferation of SCs by arresting the cell cycle in the G2/M phase and trigger the autophagy via inhibiting the PI3K/Akt/m TOR signaling pathway. Promoting or inhibiting the level of autophagy could either augment or reverse the arrest of cell cycle. And it was regulated by PI3K/Akt/m TOR signaling pathway. Taken together, this study provides evidence that autophagy and PI3K/Akt/m TOR signaling pathway are involved in regulating rats primary SCs cell-cycle arrest due to ZEA in vitro. To some extent, ZEA-induced autophagy plays a protective role in this process.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Sertoli/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Zearalenona/toxicidade , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Masculino , Ratos Wistar , Células de Sertoli/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Toxins (Basel) ; 10(5)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724047

RESUMO

Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review is to summarize the available mechanisms and current evidence of what is known about the cell proliferation or cell death induced by ZEA. An increasing number of studies have suggested that ZEA promoted cell proliferation attributing to its estrogen-like effects and carcinogenic properties. What’s more, many studies have indicated that ZEA caused cell death via affecting the distribution of the cell cycle, stimulating oxidative stress and inducing apoptosis. In addition, several studies have revealed that autophagy and some antioxidants can reverse the damage or cell death induced by ZEA. This review thoroughly summarized the metabolic process of ZEA and the molecular mechanisms of ZEA stimulating cell proliferation and cell death. It concluded that a low dose of ZEA can exert estrogen-like effects and carcinogenic properties, which can stimulate the proliferation of cells. While, in addition, a high dose of ZEA can cause cell death through inducing cell cycle arrest, oxidative stress, DNA damage, mitochondrial damage, and apoptosis.


Assuntos
Zearalenona/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Zearalenona/farmacocinética
18.
Sci Rep ; 8(1): 3320, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463855

RESUMO

The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.


Assuntos
Autofagia , Citoesqueleto/química , Estresse do Retículo Endoplasmático , Estrogênios não Esteroides/farmacologia , Estresse Oxidativo , Células de Sertoli/patologia , Zearalenona/farmacologia , Animais , Sobrevivência Celular , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Regulação da Expressão Gênica , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Toxins (Basel) ; 10(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301253

RESUMO

Zearalenone (ZEA) can perturb the differentiation of cells, reduce the generation of reproductive cells and induce a death of germ cells, but the molecular mechanism remains unclear. In order to investigate the potential mechanism of ZEA-induced cell cycle arrest and apoptosis, we studied the effects of ZEA on cell proliferation, cell-cycle distribution, cell-cycle-related proteins, cell death, cell apoptosis, ROS generation and the ATP/AMPK pathway in Sertoli cells. The role of ROS, ER stress and the ATP/AMPK pathway in ZEA-induced cell-cycle arrest and cell apoptosis was explored by using the antioxidant NAC, ER stress inhibitor 4-PBA and the AMPK inhibitor dorsomorphin, respectively. The results revealed that ZEA inhibited the cell proliferation, influenced the distribution of the cell cycle and induced cell apoptosis through the ATP/AMPK pathway. The ATP/AMPK pathway was regulated by ER stress that was induced by ROS generation after exposure to ZEA. Taking these together, this study provided evidence that ROS regulated the process of ZEA-induced cell cycle arrest and cell apoptosis through ER stress and the ATP/AMPK signal ways.


Assuntos
Células de Sertoli/efeitos dos fármacos , Zearalenona/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/fisiologia , Transdução de Sinais/efeitos dos fármacos
20.
Toxicol In Vitro ; 28(4): 647-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24512812

RESUMO

Zearalenone (ZEA) directly inhibits testosterone biosynthesis in Leydig cells, although the mechanisms involved remains unclear. Various experiments were performed to elucidate the molecular pathway of ZEA-mediated androgen inhibition. Leydig cells were isolated from 6 week-old male ICR mice and subjected to ZEA pre-treatment. The levels of testosterone and a series of influncing factors were measured. The results showed that ZEA caused a concentration- and time-dependent inhibition of testosterone stimulated both by hCG and cAMP (P<0.05). Exposure to ZEA did not affect the LHR binding activity nor the protein expression (P>0.05). However, ZEA exposure significantly elevated the cellular cAMP levels (P<0.05) in low concentrations (5 µg/ml) or for long time periods (24 h), significantly reduce the mitochondrial membrane potential (P<0.05). The expression of P450scc, 17ß-HSD, and P450c17 at the mRNA level were significantly decreased (P<0.05). The steroidogenic acute regulatory (StAR) and 3ß-HSD expression was significantly increased (P<0.05). Furthermore, the ERα protein expression was not affected by ZEA, but Nur77 expression was significantly inhibited (P<0.05). These observations imply that ZEA activity interferes with testosterone biosynthesis in mouse Leydig cells via the crosstalk of estrogen receptor signaling and Nur77 expression.


Assuntos
Células Intersticiais do Testículo/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Estrogênio/fisiologia , Testosterona/biossíntese , Zearalenona/toxicidade , Animais , Células Cultivadas , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores do LH , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA