Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(32): 36425-36437, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917454

RESUMO

Circulating tumor-initiating cells (CTICs) with stem cell-like properties play pivotal roles in tumor metastasis and recurrence. However, little is known about the biology and clinical relevance of CTICs in hepatocellular carcinoma (HCC). Here, we investigated the molecular heterogeneity and clinical relevance of CTICs in HCC using a novel integrated immunomagnetic-microfluidic platform (iMAC). We constructed the iMAC and evaluated its ability to detect CTICs using a series of spiked cell experiments. A four-channel microfluidic chip was applied to investigate the composition of CTICs in patients with primary and recurrent HCC utilizing microbeads labeled with one of four stem-related markers: epithelial cell adhesion molecule (EpCAM), CD133, CD90, and CD24. The dynamic changes of these four CTIC subsets were serially monitored during treatment courses. Finally, single-cell RNA profiling was used to reveal the molecular characteristics of the four CTIC subsets. The iMAC platform detected significantly more EpCAM+ CTICs in the blood samples from 33 HCC patients than the FDA-approved CellSearch system (0.92 ± 0.94 vs 0.23 ± 0.36, P < 0.001). The number of EpCAM+ CTICs (≥0.75/mL) detected by iMAC was a predictor of early recurrence (P = 0.007). The distinct stem-related markers' expression of CTICs could distinguish primary HCC, recurrent HCC, and TACE-resistant HCC. Single-cell transcriptional profiling proved the heterogeneity among individual CTICs and separated the four CTIC subsets into distinct phenotypes. Dissecting the heterogeneity of CTICs using the iMAC represents a novel and informative method for accurate CTIC detection and characterization. This innovative technology will enable more indepth cancer biology research and clinical cancer management than is currently available.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Antígenos de Neoplasias/metabolismo , Carcinoma Hepatocelular/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Microfluídica , Células Neoplásicas Circulantes/metabolismo , Células-Tronco Neoplásicas/patologia
2.
Clin Transl Med ; 12(4): e794, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35384345

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent malignancy with poor prognosis. As a cell adhesion molecule, poliovirus receptor (PVR/CD155) is abnormally overexpressed in tumour cells, and related to tumour proliferation and invasion. However, the potential role and mechanism of CD155 have not yet been elucidated in HCC. METHODS: Immunohistochemistry, RT-PCR and Western blot assays were used to determine CD155 expression in HCC cell lines and tissues. Cell Counting Kit-8 and colony formation assays were used to examine cell proliferation. Transwell and wound healing assays were used to evaluate cell migration and invasion. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cox regression and Kaplan-Meier analyses were performed to explore the clinical significance of CD155. The role of CD155 in vivo was evaluated by establishing liver orthotropic xenograft mice model. RNA sequencing, bioinformatics analysis and co-immunoprecipitation assay were used to explore the downstream signalling pathway of CD155. RESULTS: CD155 was upregulated in HCC tissues and represented a promising prognostic indicator for HCC patients (n = 189) undergoing curative resection. High CD155 expression enhanced cell proliferation, migration and invasion, and contributed to cell survival in HCC. CD155 overexpression also induced epithelial-mesenchymal transition in HCC cells. CD155 function in HCC involved SRC/p38 MAPK signalling pathway. CD155 interacted with SRC homology-2 domain of SRC and promoted SRC activation, further inhibiting the downstream p38 MAPK signalling pathway in HCC. CONCLUSIONS: CD155 promotes HCC progression via the SRC/p38 MAPK signalling pathway. CD155 may represent a predictor for poor postsurgery prognosis in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sistema de Sinalização das MAP Quinases , Receptores Virais , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Prognóstico , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA